Advertisement

Parasitology Research

, Volume 108, Issue 3, pp 611–620 | Cite as

Eimeria maxima phosphatidylinositol 4-phosphate 5-kinase: locus sequencing, characterization, and cross-phylum comparison

  • Mei-Yen Goh
  • Mei-Zhen Pan
  • Damer P. Blake
  • Kiew-Lian Wan
  • Beng-Kah SongEmail author
Original Paper
  • 122 Downloads

Abstract

Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) may play an important role in host-cell invasion by the Eimeria species, protozoan parasites which can cause severe intestinal disease in livestock. Here, we report the structural organization of the PIP5K gene in Eimeria maxima (Weybridge strain). Two E. maxima BAC clones carrying the E. maxima PIP5K (EmPIP5K) coding sequences were selected for shotgun sequencing, yielding a 9.1-kb genomic segment. The EmPIP5K coding region was initially identified using in silico gene-prediction approaches and subsequently confirmed by mapping rapid amplification of cDNA ends and RT-PCR-generated cDNA sequence to its genomic segment. The putative EmPIP5K gene was located at position 710-8036 nt on the complimentary strand and comprised of 23 exons. Alignment of the 1147 amino acid sequence with previously annotated PIP5K proteins from other Apicomplexa species detected three conserved motifs encompassing the kinase core domain, which has been shown by previous protein deletion studies to be necessary for PIP5K protein function. Phylogenetic analysis provided further evidence that the putative EmPIP5K protein is orthologous to that of other Apicomplexa. Subsequent comparative gene structure characterization revealed events of intron loss/gain throughout the evolution of the apicomplexan PIP5K gene. Further scrutiny of the genomic structure revealed a possible trend towards “intron gain” between two of the motif regions. Our findings offer preliminary insights into the structural variations that have occurred during the evolution of the PIP5K locus and may aid in understanding the functional role of this gene in the cellular biology of apicomplexan parasites.

Keywords

Plasmodium Species Coccidiosis Apicomplexan Parasite Intron Gain Eimeria Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This project was supported by the Genomics and Molecular Biology Initiatives Programme of the Malaysia Genome Institute, Ministry of Science, Technology and Innovation Malaysia (Project No. 07-05-16-MGI-GMB10) and the Biotechnology and Biological Sciences Research Council, UK (BBSRC Grant BBE01089X1). The authors would like to acknowledge Dr Michael Quail for construction of the E. maxima BAC library and Karen Billington for construction of the SMART cDNA library. The authors would like to thank the Sanger Institute and the E. tenella Genome Consortium (http://www.sanger.ac.uk/Projects/E_tenella/consortium.shtml) for generation of the E. tenella sequencing data supported by the BBSRC and the Wellcome Trust.

References

  1. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21(9):2104–2105CrossRefPubMedGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  3. Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Bucher P, Cerutti L, Corpet F, Croning MDR (2001) InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res 29:37–40CrossRefPubMedGoogle Scholar
  4. Basu MK, Rogozin IB, Deusch O, Dagan T, Martin W, Koonin EV (2008) Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues. Mol Biol Evol 25:111–119CrossRefPubMedGoogle Scholar
  5. Baum J, Gilberger TW, Frischknecht F, Meissner M (2008) Host-cell invasion by malaria parasites: insights from Plasmodium and Toxoplasma. Trends Parasitol 24:557–563CrossRefPubMedGoogle Scholar
  6. Berman HM, Henrick K, Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Biol 10:980CrossRefPubMedGoogle Scholar
  7. Blake DP, Smith AL, Shirley MW (2003) Amplified fragment length polymorphism analyses of Eimeria spp.: an improved process for genetic studies of recombinant parasites. Parasitol Res 90:473–475CrossRefPubMedGoogle Scholar
  8. Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94CrossRefPubMedGoogle Scholar
  9. Burgoyne RD, O'Callaghan DW, Hasdemir B, Haynes LP, Tepikin AV (2004) Neuronal Ca2+-sensor proteins: multitalented regulators of neuronal function. Trends Neurosci 27:203–209CrossRefPubMedGoogle Scholar
  10. Caldas LA, de Souza W, Attias M (2007) Calcium ionophore-induced egress of Toxoplasma gondii shortly after host cell invasion. Vet Parasitol 147:210–220CrossRefPubMedGoogle Scholar
  11. Carmel L, Wolf YI, Rogozin IB, Koonin EV (2007) Three distinct modes of intron dynamics in the evolution of Eukaryotes. Genome Res 17:1034–1044CrossRefPubMedGoogle Scholar
  12. Carreno RA, Matrin DS, Barta JR (1999) Cryptosporidium is more closely related to the gregarines than to coccidia as shown by phylogenetic analysis of apicomplexan parasites inferred using small-subunit ribosomal RNA gene sequences. Parasitol Res 85:899–904CrossRefPubMedGoogle Scholar
  13. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552PubMedGoogle Scholar
  14. Dobrowolski JM, Sibley LD (1996) Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 84:933–939CrossRefPubMedGoogle Scholar
  15. Dobrowolski JM, Carruthers VB, Sibley LD (1997) Participation of myosin in gliding motility and host cell invasion by Toxoplasma gondii. Mol Microbiol 26:163–173CrossRefPubMedGoogle Scholar
  16. Dubremetz JF, Garcia-Reguet N, Conseil V, Fourmaux MN (1998) Apical organelles and host-cell invasion by Apicomplexa. Int J Parasitol 28:1007–1013CrossRefPubMedGoogle Scholar
  17. Dunn PPJ, Bumstead JM, Tomley FM (1996) Sequence, expression and localization of calmodulin-domain protein kinases in Eimeria tenella and Eimeria maxima. Parasitol 113:439–448CrossRefGoogle Scholar
  18. Dunn PP, Billington K, Bumstead JM, Tomley FM (1995) Isolation and sequences of cDNA clones for cytosolic and organellar hsp70 species in Eimeria spp. Mol Biochem Parasitol 70:211–215CrossRefPubMedGoogle Scholar
  19. Escalante A, Ayala F (1995) Evolutionary origin of Plasmodium and other Apicomplexa based on rRNA genes. Proc Natl Acad Sci USA 92:5793–5797CrossRefPubMedGoogle Scholar
  20. Gonzalez V, Combe A, David V, Malmquist NA, Delorme V, Leroy C, Blazquez S, Ménard R, Tardieux I (2009) Host cell entry by apicomplexa parasites requires actin polymerization in the host cell. Cell Host & Microbe 5:259–272CrossRefGoogle Scholar
  21. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  22. Ishihara H, Shibasaki Y, Kizuki N, Wada T, Yazaki Y, Asano T, Oka Y (1998) Type I phosphatidylinositol-4-phosphate 5-kinases: cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family. J Biol Chem 273:8741–8748CrossRefPubMedGoogle Scholar
  23. Jean L, Perry P, Dunn P, Bumstead J, Billington K, Ryan R, Tomley F (2001) Genomic organization and developmentally regulated expression of an apicomplexan aspartyl proteinase. Gene 262:129–136CrossRefPubMedGoogle Scholar
  24. Jeffares DC, Mourier T, Penny D (2006) The biology of intron gain and loss. Trends Genet 22:16–22CrossRefPubMedGoogle Scholar
  25. Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, Alaoui HE, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivares CP (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414:450–453CrossRefPubMedGoogle Scholar
  26. Kelley LA, Sternberg MJE (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protocol 4:363–371CrossRefGoogle Scholar
  27. Kunz J, Wilson MP, Kisseleva M, Hurley JH, Majerus PW, Anderson RA (2000) The activation loop of phosphatidylinositol phosphate kinases determines signaling specificity. Mol Cell 5:1–11CrossRefPubMedGoogle Scholar
  28. Kuo CH, Kissinger JC (2008) Consistent and contrasting properties of lineage-specific genes in the apicomplexan parasites Plasmodium and Theileria. BMC Evol Biol. doi: 10.1186/1471-2148-8-108 PubMedGoogle Scholar
  29. Kuo CH, Wares JP, Kissinger JC (2008) The Apicomplexan whole-genome phylogeny: an analysis of incongruence among gene trees. Mol Biol Evol 25:2689–2698CrossRefPubMedGoogle Scholar
  30. Lang-Unnasch N, Reith ME, Munholland J, Barta JR (1998) Plastids are widespread and ancient in parasites of the phylum Apicomplexa. Int J Parasitol 28:1743–1754CrossRefPubMedGoogle Scholar
  31. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  32. Leander BS, Clopton RE, Keeling PJ (2003) Phylogeny of gregarines (Apicomplexa) as inferred from small-subunit rDNA and β-tubulin. Int J Syst Evol Microbiol 53:345–354CrossRefPubMedGoogle Scholar
  33. Leber W, Skippen A, Fivelman QL, Bowyer PW, Cockcroft S, Baker DA (2009) A unique phosphatidylinositol 4-phosphate 5-kinase is activated by ADP-ribosylation factor in Plasmodium falciparum. Int J Parasitol 39:645–653CrossRefPubMedGoogle Scholar
  34. Le Hir H, Nott A, Moore MJ (2003) How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci 28:215–220CrossRefPubMedGoogle Scholar
  35. Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189CrossRefPubMedGoogle Scholar
  36. Lien YY, Sheu SC, Liu HJ, Chen SC, Tsai MY, Luo SC, Wu KC, Liu SS, Su HY (2007) Cloning and nucleotide sequencing of the second internal transcribed spacer of ribosomal DNA for three species of Eimeria from chickens in Taiwan. Vet J 173:184–189CrossRefPubMedGoogle Scholar
  37. Ling KH, Loo SS, Rosli R, Shamsudin MN, Mohamed R, Wan KL (2007a) In silico identification and characterization of a putative phosphatidylinositol 4-phosphate 5-kinase (PIP5K) gene in Eimeria tenella. In Silico Biol 7:115–121PubMedGoogle Scholar
  38. Ling KH, Rajandream MA, Rivailler P, Ivens A, Yap SJ, Madeira AMBN, Mungall K, Billington K, Yee WY, Bankier AT, Carroll F, Durham AM, Peters N, Loo SS, Mat-Isa MN, Novaes J, Quail M, Rosli R, Mariana NS, Sobreira TJP, Tivey A, Wai SF, White S, Wu X, Kerhornou A, Blake D, Mohamed R, Shirley M, Gruber A, Berriman M, Tomley F, Dear PH and Wan KL (2007b) Sequencing and analysis of chromosome 1 of Eimeria tenella reveals a unique segmental organization. Genome Research 17:311–319CrossRefPubMedGoogle Scholar
  39. Loijens JC, Anderson RA (1996) Type I phosphatidylinositol-4-phosphate-5 kinases are distinct members of this novel lipid kinase family. J Biol Chem 271:32937–32943CrossRefPubMedGoogle Scholar
  40. Lovett JL, Sibley LD (2003) Intracellular calcium stores in Toxoplasma gondii govern invasion of host cells. J Cell Sci 116:3009–3016CrossRefPubMedGoogle Scholar
  41. Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M, Hao L, He S, Hurwitz DI, Jackson JD, Ke Z, Krylov D, Lanczycki C, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Song JS, Thanki N, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2007) CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 35:D237–D240CrossRefPubMedGoogle Scholar
  42. Nene V, Bishop R, Morzaria S, Gardner MJ, Sugimoto C, ole-MoiYoi OK, Fraser CM, Irvin A (2000) Theileria parva genomics reveals an atypical apicomplexan genome. Int J Parasitol 30:465–474CrossRefPubMedGoogle Scholar
  43. Pasamontes L, Hug D, Humbelin M, Weber G (1993) Sequence of a major Eimeria maxima antigen homologous to the Eimeria tenella microneme protein Etp100. Mol Biochem Parasitol 57:171–174CrossRefPubMedGoogle Scholar
  44. Periz J, Ryan R, Blake DP, Tomley FM (2009) Eimeria tenella microneme protein EtMIC4: capture of the full-length transcribed sequence and comparison with other microneme proteins. Parasitol Res 104:717–721CrossRefPubMedGoogle Scholar
  45. Plattner F, Yarovinsky F, Romero S, Didry D, Carlier MF, Sher A, Soldati-Favre D (2008) Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell Host & Microbe 3:77–87CrossRefGoogle Scholar
  46. Riordan CE, Langreth SG, Sanchez LB, Kayser O, Keithly JS (1999) Preliminary evidence for a mitochondrion in Cryptosporidium parvum: phylogenetic and therapeutic implications. J Eukaryot Microbiol 46:52S–55SPubMedGoogle Scholar
  47. Roy SW, Hartl DL (2006) Very little intron loss/gain in Plasmodium: Intron loss/gain mutation rates and intron number. Genome Res 16:750–756CrossRefPubMedGoogle Scholar
  48. Roy SW, Penny D (2006) Large-scale intron conservation and order-of-magnitude variation in intron loss/gain rates in apicomplexan evolution. Genome Res 16:1270–1275CrossRefPubMedGoogle Scholar
  49. Roy SW, Penny D (2007) Widespread intron loss suggests retrotransposon activity in ancient apicomplexans. Mol Biol Evol 14:1926–1933CrossRefGoogle Scholar
  50. Roy SW, Irimia M (2008) Mystery of intron gain: new data and new models. Trends Genet 25:67–73CrossRefPubMedGoogle Scholar
  51. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945CrossRefPubMedGoogle Scholar
  52. Sakharkar KR, Dhar PK, Chow VT (2004) Genome reduction in prokaryotic obligatory intracellular parasites of humans: a comparative analysis. Int J Syst Evol Microbiol 54:1937–1941CrossRefPubMedGoogle Scholar
  53. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  54. Seeber F (1997) Consensus sequence of translational initiation sites from Toxoplasma gondii genes. Parasitol Res 83:309–311CrossRefPubMedGoogle Scholar
  55. Shirley MW, Blake DP, White SE, Sheriff R, Smith AL (2004a) Integrating genetics and genomics to identify new leads for the control of Eimeria spp. Parasitol 128:S33–S42Google Scholar
  56. Shirley MW, Ivens A, Gruber A, Madeira AM, Wan K-L, Dear PH, Tomley FM (2004b) The Eimeria genome projects: a sequence of events. Trends Parasitol 20:199–201CrossRefPubMedGoogle Scholar
  57. Shirley MW, Smith AL, Tomley FM (2005) The biology of avian Eimeria with an emphasis on their control by vaccination. Adv Parasitol 60:285–330CrossRefPubMedGoogle Scholar
  58. Shirley MW, Smith AL, Blake DP (2007) Challenges in the successful control of the avian coccidia. Vaccine 25:5540–5547CrossRefPubMedGoogle Scholar
  59. Soldati D, Foth BJ, Cowman AF (2004) Molecular and functional aspects of parasite invasion. Trends Parasitol 20:567–572CrossRefPubMedGoogle Scholar
  60. Stanke M, Diekhans M, Baertsch R, Haussler D (2008) Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24:637–644CrossRefPubMedGoogle Scholar
  61. Su YC, Fei ACY, Tsai FM (2003) Differential diagnosis of five avian Eimeria species by polymerase chain reaction using primers derived from the internal transcribed spacer (ITS-1) sequence. Vet Parasitol 117:221–227CrossRefPubMedGoogle Scholar
  62. Tolias KF, Rameh LE, Ishihara H, Shibasaki Y, Chen J, Prestwich GD, Cantley LC, Carpenter CL (1998) Type I phosphatidylinositol-4-phosphate 5 kinases synthesizes the novel lipids phosphatidylinositol 3, 5-bisphosphate and phosphatidylinositol 5-phosphate. J Biol Chem 273:18040–18046CrossRefPubMedGoogle Scholar
  63. Tomley FM, Clarke LE, Kawazoe U, Dijkema R, Kok JJ (1991) Sequence of the gene encoding an immunodominant microneme protein of Eimeria tenella. Mol Biochem Parasitol 49:277–288CrossRefPubMedGoogle Scholar
  64. Vinogradov AE (2001) Intron length and codon usage. J Mol Evol 52:2–5PubMedGoogle Scholar
  65. Yeh RF, Lim LP, Burge CB (2001) Computational inference of homologous gene structures in the human genome. Genome Res 11:803–816CrossRefPubMedGoogle Scholar
  66. Zhang MQ (2002) Computational prediction of eukaryotic protein-coding genes. Nat Rev Genet 3:698–709CrossRefPubMedGoogle Scholar
  67. Zhu G, Keithly JS, Philippe H (2000a) What is the phylogenetic position of Cryptosporidium? Int J Syst Evol Microbiol 50:1673–1681PubMedGoogle Scholar
  68. Zhu G, Marchewka MJ, Keithly JS (2000b) Cryptosporidium parvum appears to lack a plastid genome. Microbiol 146:315–321Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Mei-Yen Goh
    • 1
  • Mei-Zhen Pan
    • 1
  • Damer P. Blake
    • 2
    • 3
  • Kiew-Lian Wan
    • 4
    • 5
  • Beng-Kah Song
    • 1
    Email author
  1. 1.School of ScienceMonash University Sunway CampusSelangor DEMalaysia
  2. 2.Parasitology, Institute for Animal HealthBerkshireUK
  3. 3.Enteric ImmunologyInstitute for Animal HealthBerkshireUK
  4. 4.Malaysia Genome Institute, UKM-MTDC Technology CentreUniversiti Kebangsaan MalaysiaSelangor DEMalaysia
  5. 5.School of Biosciences and Biotechnology, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaSelangor DEMalaysia

Personalised recommendations