Parasitology Research

, Volume 108, Issue 3, pp 529–536 | Cite as

Anti-leishmanial effects of purified compounds from aerial parts of Baccharis uncinella C. DC. (Asteraceae)

  • Luiz Felipe D. Passero
  • Alexis Bonfim-Melo
  • Carlos Eduardo P. Corbett
  • Márcia D. Laurenti
  • Marcos H. Toyama
  • Daniela O. de Toyama
  • Paulete Romoff
  • Oriana A. Fávero
  • Simone S. dos Grecco
  • Cynthia A. Zalewsky
  • João Henrique G. Lago
Original Paper

Abstract

Species of Baccharis exhibit antibiotic, antiseptic, wound-healing, and anti-protozoal properties, and have been used in the traditional medicine of South America for the treatment of several diseases. In the present work, the fractionation of EtOH extract from aerial parts of Baccharis uncinella indicated that the isolated compounds caffeic acid and pectolinaringenin showed inhibitory activity against Leishmania (L.) amazonensis and Leishmania (V.) braziliensis promastigotes, respectively. Moreover, amastigote forms of both species were highly sensible to the fraction composed by oleanolic + ursolic acids and pectolinaringenin. Caffeic acid also inhibited amastigote forms of L. (L.) amazonensis, but this effect was weak in L. (V.) braziliensis amastigotes. The treatment of infected macrophages with these compounds did not alter the levels of nitrates, indicating a direct effect of the compounds on amastigote stages. The results presented herein suggest that the active components from B. uncinella can be important to the design of new drugs against American tegumentar leishmaniases.

References

  1. Al-Mohammed HI, Chance ML, Bates PA (2005) Production and characterization of stable amphotericin-resistant amastigotes and promastigotes of Leishmania mexicana. Antimicrob Agents Chemother 49:3274–3280CrossRefPubMedGoogle Scholar
  2. Arevalo J, Ramirez L, Adaui V, Zimic M, Tulliano G, Miranda-Verástegui C, Lazo M, Loayza-Muro R, De Doncker S, Maurer A, Chappuis F, Dujardin JC, Llanos-Cuentas A (2007) Role of imiquimod and parenteral meglumine antimoniate in the initial treatment of cutaneous leishmaniasis. Clin Infect Dis 44:1549–1554CrossRefPubMedGoogle Scholar
  3. Bohlmann F, Knauf W, King RM, Robinson H (1979) Ein neues diterpen und weitere inhaltsstoffe aus Baccharis-arten. Phytochemistry 18:1011–1014CrossRefGoogle Scholar
  4. Boller S, Soldi C, Marques MC, Santos EP, Cabrini DA, Pizzolatti MG, Zampronio AR, Otuki MF (2010) Anti-inflammatory effect of crude extract and isolated compounds from Baccharis illinita DC in acute skin inflammation. J Ethnopharmacol 130:262–266CrossRefPubMedGoogle Scholar
  5. Campos MB, De Castro Gomes CM, de Souza AA, Lainson R, Corbett CE, Silveira FT (2008) In vitro infectivity of species of Leishmania (Viannia) responsible for American cutaneous leishmaniasis. Parasitol Res 103:771–776CrossRefPubMedGoogle Scholar
  6. Ceruks M, Romoff P, Favero OA, Lago JHG (2007) Constituíntes fenólicos polares de Schinus terebinthifolius Raddi (Anacardiaceae). Quim Nova 30:597–599Google Scholar
  7. Croft SL, Coombs GH (2003) Leishmaniasis—current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 19:502–508CrossRefPubMedGoogle Scholar
  8. Feresin GE, Tapia A, López SN, Zacchino AS (2001) Antimicrobial activity of plants used in traditional medicine of San Juan province, Argentine. J Ethnopharmacol 78:103–107CrossRefPubMedGoogle Scholar
  9. Fournet A, Barrios AA, Muñoz V (1994) Leishmanicidal and trypanocidal activities of Bolivian medicinal plants. J Ethnopharmacol 41:19–37CrossRefPubMedGoogle Scholar
  10. Gansané A, Sanon S, Ouattara LP, Traoré A, Hutter S, Ollivier E, Azas N, Traore AS, Guissou IP, Sirima SB, Nebié I (2010) Antiplasmodial activity and toxicity of crude extracts from alternatives parts of plants widely used for the treatment of malaria in Burkina Faso: contribution for their preservation. Parasitol Res 106:335–340CrossRefPubMedGoogle Scholar
  11. Gené RM, Cartaña C, Adzet T, Marín E, Parella T, Cañigueral S (1996) Anti-inflammatory and analgesic activity of Baccharis trimera: identification of its active constituents. Planta Med 62:232–235CrossRefPubMedGoogle Scholar
  12. Gnoatto SC, Dalla Vechia L, Lencina CL, Dassonville-Klimpt A, Da Nascimento S, Mossalayi D, Guillon J, Gosmann G, Sonnet P (2008) Synthesis and preliminary evaluation of new ursolic and oleanolic acids derivatives as antileishmanial agents. J Enzyme Inhib Med Chem 23:604–610CrossRefPubMedGoogle Scholar
  13. Grecco SS, Reimão JQ, Tempone AG, Sartorelli P, Romoff P, Ferreira MJ, Fávero OA, Lago JH (2010) Isolation of an antileishmanial and antitrypanosomal flavanone from the leaves of Baccharis retusa DC. (Asteraceae). Parasitol Res 106:1245–1248CrossRefPubMedGoogle Scholar
  14. Hase T, Ohtani K, Kasai R, Yamasaki K, Picheansoonthon C (1995) Revised structure for hortensin, a flavonoid from Millingtonia hortensis. Phytochemistry 40:287–290CrossRefGoogle Scholar
  15. Herwaldt BL (1999) Leishmaniasis. Lancet 354(9185):1191–1199CrossRefPubMedGoogle Scholar
  16. Hibbs JB Jr, Taintor RR, Vavrin Z, Rachlin EM (1988) Nitric oxide: a cytotoxic activated macrophages effector molecule. Biochem Biophys Res Commun 157:87–94CrossRefPubMedGoogle Scholar
  17. Jarvis BB, Mokhtari-Rejali N, Schenkel EP, Barros CS, Matzenbacher NI (1991) Trichothecene mycotoxins from Brazilian Baccharis species. Phytochemistry 30:789–797CrossRefGoogle Scholar
  18. Kedzierski L, Curtis JM, Kaminska M, Jodynis-Liebert J, Murias M (2007) In vitro antileishmanial activity of resveratrol and its hydroxylated analogues against Leishmania major promastigotes and amastigotes. Parasitol Res 102:91–97CrossRefPubMedGoogle Scholar
  19. Labbe C, Rovirosa J, Faini F, Mahu M, San-Martin A, Castillo M (1986) Secondary metabolites from Chilean Baccharis species. J Nat Prod 49:517–518CrossRefGoogle Scholar
  20. Lira R, Sundar S, Makharia A, Kenney R, Gam A, Saraiva E, Sacks D (1999) Evidence that the high incidence of treatment failures in Indian kala-azar is due to the emergence of antimony-resistant strains of Leishmania donovani. J Infect Dis 180:564–567CrossRefPubMedGoogle Scholar
  21. Mishra M, Biswas UK, Jha DN, Khan AB (1992) Amphotericin versus pentamidine in antimony-unresponsive kala-azar. Lancet 340:1256–1267CrossRefPubMedGoogle Scholar
  22. Moreira IC, Roque NF, Contini K, Lago JHG (2007) Sesquiterpenos e hidrocarbonetos dos frutos de Xylopia emarginata (Annonaceae). Rev Bras Farmacogn 17:55–58Google Scholar
  23. Muelas-Serrano S, Nogal JJ, Martínez-Díaz RA, Escario JA, Martínez-Fernández AR, Gómez-Barrio A (2000) In vitro screening of american plant extracts on Trypanosoma cruzi and Trichomonas vaginalis. J Ethnopharmacol 71:101–107CrossRefPubMedGoogle Scholar
  24. Murray HW, Delph-Etienne S (2000) Roles of endogenous gamma interferon and macrophage microbicidal mechanisms in host response to chemotherapy in experimental visceral leishmaniasis. Infect Immun 68:288–293CrossRefPubMedGoogle Scholar
  25. Nagatani Y, Warashina T, Noro T (2002) Studies on the constituents of aerial part of Baccharis dracunculifolia DC. II. Chem Pharm Bull 50:583–589CrossRefPubMedGoogle Scholar
  26. Passero LF, Tomokane TY, Corbett CE, Laurenti MD, Toyama MH (2007a) Comparative studies of the anti-leishmanial activity of three Crotalus durissus ssp. venoms. Parasitol Res 101:1365–1371CrossRefPubMedGoogle Scholar
  27. Passero LF, Castro AA, Tomokane TY, Kato MJ, Paulinetti TF, Corbett CE, Laurenti MD (2007b) Anti-leishmania activity of semi-purified fraction of Jacaranda puberula leaves. Parasitol Res 101:677–680CrossRefPubMedGoogle Scholar
  28. Passero LF, Sacomori JV, Tomokane TY, Corbett CE, da Silveira FT, Laurenti (2009) Ex vivo and in vivo biological behavior of Leishmania (Viannia) shawi. Parasitol Res 105:1741–1747Google Scholar
  29. Passero LF, Marques C, Vale-Gato I, Corbett CE, Laurenti MD, Santos-Gomes G (2010) Histopathology, humoral and cellular immune response in the murine model of Leishmania (Viannia) shawi. Parasitol Int 59:159–165CrossRefPubMedGoogle Scholar
  30. Pereira LI, Dorta ML, Pereira AJ, Bastos RP, Oliveira MA, Pinto SA, Galdino H Jr, Mayrink W, Barcelos W, Toledo VP, Lima GM, Ribeiro-Dias F (2009) Increase of NK cells and proinflammatory monocytes are associated with the clinical improvement of diffuse cutaneous leishmaniasis after immunochemotherapy with BCG/Leishmania antigens. Am J Trop Med Hyg 81:378–383PubMedGoogle Scholar
  31. Santin MR, dos Santos AO, Nakamura CV, Dias Filho BP, Ferreira IC, Ueda-Nakamura T (2009) In vitro activity of the essential oil of Cymbopogon citratus and its major component (citral) on Leishmania amazonensis. Parasitol Res 105:1489–1496CrossRefPubMedGoogle Scholar
  32. Santoro GF, das Graças Cardoso M, Guimarães LG, Salgado AP, Menna-Barreto RF, Soares MJ (2007) Effect of oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.) essential oils on Trypanosoma cruzi (Protozoa: Kinetoplastida) growth and ultrastructure. Parasitol Res 100:783–790CrossRefPubMedGoogle Scholar
  33. Saravia NG, Holguín AF, McMahon-Pratt D, D’Alessandro A (1985) Mucocutaneous leishmaniasis in Colombia: Leishmania braziliensis subspecies diversity. Am J Trop Med Hyg 34:714–720PubMedGoogle Scholar
  34. Seebacher W, Simic N, Weis R, Saf R, Kunert O (2003) Complete assignments of 1H and 13C NMR resonances of oleanolic acid, 18α-oleanolic acid, ursolic acid and their 11-oxo derivatives. Magn Reson Chem 41:636–638CrossRefGoogle Scholar
  35. Silva Filho AA, Resende DO, Fukui MJ, Santos FF, Pauletti PM, Cunha WR, Silva ML, Gregório LE, Bastos JK, Nanayakkara NP (2009) In vitro antileishmanial, antiplasmodial and cytotoxic activities of phenolics and triterpenoids from Baccharis dracunculifolia D. C. (Asteraceae). Fitoterapia 80:478–482CrossRefPubMedGoogle Scholar
  36. Sundar (2001) Drug resistance in Indian visceral leishmaniasis. Trop Med Int Health 6:849–854CrossRefPubMedGoogle Scholar
  37. Tan BK, Vanitha J (2004) Immunomodulatory and antimicrobial effects of some traditional chinese medicinal herbs: a review. Curr Med Chem 11:1423–1430PubMedGoogle Scholar
  38. Tan N, Kaloga M, Radtke OA, Kiderlen AF, Oksüz S, Ulubelen A, Kolodziej H (2002) Abietane diterpenoids and triterpenoic acids from Salvia cilicica and their antileishmanial activities. Phytochemistry 61:881–884CrossRefPubMedGoogle Scholar
  39. Torres-Santos EC, Lopes D, Oliveira RR, Carauta JP, Falcao CA, Kaplan MA, Rossi-Bergmann B (2004) Antileishmanial activity of isolated triterpenoids from Pourouma guianensis. Phytomedicine 11:114–120CrossRefPubMedGoogle Scholar
  40. Verdi LG, Brighente IMC, Pizzolati MG (2005) Gênero Baccharis (Asteraceae): aspectos químicos, econômicos e biológicos. Quim Nova 28:85–94Google Scholar
  41. Vieira-Gonçalves R, Pirmez C, Jorge ME, Souza WJ, Oliveira MP, Rutowitsch MS, Da-Cruz AM (2008) Clinical features of cutaneous and disseminated cutaneous leishmaniasis caused by Leishmania (Viannia) braziliensis in Paraty, Rio de Janeiro. Int J Dermatol 47:926–932CrossRefPubMedGoogle Scholar
  42. Wang GF, Shi LP, Ren YD, Liu QF, Liu HF, Zhang RJ, Li Z, Zhu FH, He PL, Tang W, Tao PZ, Li C, Zhao WM, Zuo JP (2009) Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antivir Res 83:186–190CrossRefPubMedGoogle Scholar
  43. Yuvamoto PD, Said S (2007) Germination, duplication cycle and septum formation are altered by caffeine, caffeic acid and cinnamic acid in Aspergillus nidulans. Mikrobiologiia 76:830–833PubMedGoogle Scholar
  44. Zahir AA, Rahuman AA, Kamaraj C, Bagavan A, Elango G, Sangaran A, Kumar BS (2009) Laboratory determination of efficacy of indigenous plant extracts for parasites control. Parasitol Res 105:453–461CrossRefPubMedGoogle Scholar
  45. Zdero C, Bohlmann F, Solomon JC, King RM, Robinson H (1988) Ent-clerodanes and other constituents from Bolivian Baccharis species. Phytochemistry 28:531–542CrossRefGoogle Scholar
  46. Zhou L, Li D, Wang J, Liu Y, Wu J (2007) Antibacterial phenolic compounds from the spines of Gleditsia sinensis Lam. Nat Prod Res 21:283–291CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Luiz Felipe D. Passero
    • 1
  • Alexis Bonfim-Melo
    • 1
  • Carlos Eduardo P. Corbett
    • 1
  • Márcia D. Laurenti
    • 1
  • Marcos H. Toyama
    • 2
  • Daniela O. de Toyama
    • 3
  • Paulete Romoff
    • 3
  • Oriana A. Fávero
    • 3
  • Simone S. dos Grecco
    • 4
  • Cynthia A. Zalewsky
    • 4
  • João Henrique G. Lago
    • 4
  1. 1.Laboratório de Patologia de Moléstias Infecciosas, Departamento de Patologia, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
  2. 2.Universidade Estadual Paulista Júlio de Mesquita FilhoSão VicenteBrazil
  3. 3.Laboratório de Química dos Produtos Naturais, Centro de Ciências e Humanidades e Centro de Ciências Biológicas e da SaúdeUniversidade Presbiteriana MackenzieSão PauloBrazil
  4. 4.Departamento de Ciências Exatas e da TerraUniversidade Federal de São PauloDiademaBrazil

Personalised recommendations