Advertisement

Parasitology Research

, Volume 108, Issue 1, pp 201–209 | Cite as

Development of high-resolution melting (HRM) analysis for population studies of Fascioloides magna (Trematoda: Fasciolidae), the giant liver fluke of ruminants

  • Ján Radvánský
  • Eva BazsalovicsováEmail author
  • Ivica Králová-Hromadová
  • Gabriel Minárik
  • Ľudevít Kádaši
Original Paper

Abstract

The high-resolution melting (HRM) technique was successfully optimized as fast and effective method for population study of digenetic fluke, Fascioloides magna (Trematoda: Fasciolidae), originally North American liver parasite of free-living and domestic ruminants. Previously selected variable region (439 bp) of mitochondrial cytochrome c oxidase subunit I (cox1) of 249 fluke individuals from enzootic European and North American regions were sequenced and mutually compared. The sequence analysis of partial cox1 revealed presence of seven structurally different haplotypes. Based on the sequence structure and alignments of six of them (Ha1–Ha6), three internal probes were designed and applied in HRM-based haplotype determination of all F. magna specimens. HRM analysis, performed with three designed probes, resulted in classification of samples into the seven haplogroups, equally with their assortment according to the sequence analysis. The representative of the haplotype, which was not involved in probe design (Ha7), was characterized by a unique melting curve shape as well. This provided an evidence of optimally settled conditions in HRM assay and indicated a probability of successful discrimination of novel haplotypes in future population studies on F. magna. The successful optimization of HRM method stands for an opportunity of detection of genetically unknown North American variants of F. magna and promises its application as fast and cheap screening technique for phylogeography studies of the giant liver fluke on its original continent.

Keywords

Polymorphic Site Mitochondrial Haplotype Single Strand Conformational Polymorphism Internal Probe Cox1 Haplotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to acknowledge Dr. Marta Špakulová (Parasitological Institute SAS, Košice, Slovakia) for critical readings of the manuscript and valuable comments. We are sincerely thankful to the following scientists for donation of parasitic material: Prof. Luca Rossi (Faculty of Veterinary Medicine, University of Turin, Italy), Assoc. Prof. Dušan Rajský (Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia), Dr. Martin Kašný (Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic), Prof. Břetislav Koudela and Dr. Adam Novobilský (Department of Parasitology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic), Prof. Albert Marinculić and Dr. Relja Beck (Department of Parasitology, Veterinary Faculty, University of Zagreb, Zagreb, Croatia), Prof. Egri Borisz (University of West Hungary, Institute of Animal Science, Department of Animal Health, Mosonmagyaróvár, Hungary), Dr. Margo Pybus (Alberta Fish and Wildlife Division, Edmonton, Alberta, Canada), and Dr. Kevin M. Keel (Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA).

This work was supported by the Slovak Research and Development Agency under contract APVV-51-062205 and project of the Grant Agency of the Slovak Republic (VEGA 1/0602/08). The publication has been created within realization of the project “Centre of Excellence for Parasitology” (Code ITMS: 26220120022), based on the support of Operational Programme “Research & Development” funded from the European Regional Development Fund (rate 0.1).

References

  1. Andriantsoanirina V, Lascombes V, Ratsimbasoa A, Bouchier C, Hoffman J, Tichit M, Rabarijaona LP, Durand R, Ménard D (2009) Rapid detection of point mutations in Plasmodium falciparum genes associated with antimalarial drugs resistance by using high-resolution melting analysis. J Microbiol Meth 78:165–170CrossRefGoogle Scholar
  2. Areekit S, Kanjanavas P, Pakpitchareon A, Khawsak P, Khuchareontaworn S, Sriyaphai T, Chansiri K (2009) High resolution melting real-time PCR for rapid discrimination between Brugia malayi and Brugia pahangi. J Med Assoc Thai 3:24–28Google Scholar
  3. Balbo T, Rossi L, Menegus PG (1989) Integrated control of Fascioloides magna infection in northern Italy. Parassitologia 31:137–144PubMedGoogle Scholar
  4. Bassi R (1875) Sulla cachessia ittero-vermicosa, o marciaia dei Cervi, causata dal Distomum magnum. II Medico Veterinario 4:497–515Google Scholar
  5. Bazsalovicsová E, Králová-Hromadová I, Špakulová M, Reblánová M, Oberhauserová K (2010) Determination of ribosomal internal transcribed spacer 2 (ITS2) interspecific markers in Fasciola hepatica, Fascioloides magna, Dicrocoelium dendriticum and Paramphistomum cervi (Trematoda), parasites of wild and domestic ruminants. Helminthologia 47:76–82CrossRefGoogle Scholar
  6. Bennett CD, Campbell MN, Cook CJ, Eyre DJ, Nay LM, Nielsen DR, Rasmussen RP, Bernard PS (2003) The LightTyper: high-throughput genotyping using fluorescent melting curve analysis. Biotechniques 34:1288–1295PubMedGoogle Scholar
  7. Chou LS, Lyon E, Wittwer CT (2005) A comparison of high-resolution melting analysis with denaturing high-performance liquid chromatography for mutation scanning: cystic fibrosis transmembrane conductance regulator gene as a model. Am J Clin Pathol 124:330–338CrossRefPubMedGoogle Scholar
  8. Dames S, Margraf RL, Pattison DC, Wittwer CT, Voelkerding KV (2007) Characterization of aberrant melting peaks in unlabeled probe assays. J Mol Diagn 9:290–296CrossRefPubMedGoogle Scholar
  9. Erhardová-Kotrlá B (1971) The occurrence of Fascioloides magna (Bassi, 1875) in Czechoslovakia. Czechoslovak Academy of Sciences, PragueGoogle Scholar
  10. Gundry CN, Vandersteen JG, Reed GH, Pryor RJ, Chen J, Wittwer CT (2003) Amplicon melting analysis with labeled primers: a closed-tube method for differentiating homozygotes and heterozygotes. Clin Chem 49:396–406CrossRefPubMedGoogle Scholar
  11. Gundry CN, Dobrowolski SF, Martin YR, Robbins TC, Nay LM, Boyd N, Coyne T, Wall MD, Wittwer CT, Teng DH (2008) Base-pair neutral homozygotes can be discriminated by calibrated high-resolution melting of small amplicons. Nucleic Acids Res 36:3401–3408CrossRefPubMedGoogle Scholar
  12. Herrmann MG, Durtschi JD, Bromley LK, Wittwer CT, Voelkerding KV (2006) Amplicon DNA melting analysis for mutation scanning and genotyping: crossplatform comparison of instruments and dyes. Clin Chem 52:494–503CrossRefPubMedGoogle Scholar
  13. Herrmann MG, Durtschi JD, Wittwer CT, Voelkerding KV (2007) Expanded instrument comparison of amplicon DNA melting analysis for mutation scanning and genotyping. Clin Chem 53:1544–1548CrossRefPubMedGoogle Scholar
  14. Hu M, Chilton NB, Gasser RB (2004) The mitochondrial genomics of parasitic nematodes of socio-economic importance: recent progress and implications for population genetics and systematics. Adv Parasitol 56:133–212CrossRefPubMedGoogle Scholar
  15. Hussein EM, Al-Mohammed HI, Hussein AM (2009) Genetic diversity of Dientamoeba fragilis isolates of irritable bowel syndrome patients by high-resolution melting-curve (HRM) analysis. Parasitol Res 105:1053–1060CrossRefPubMedGoogle Scholar
  16. Králová-Hromadová I, Špakulová M, Horáčková E, Turčeková L, Novobilský A, Beck R, Koudela B, Marinculić A, Rajský D, Pybus M (2008) Sequence analysis of ribosomal and mitochondrial genes of the giant liver fluke Fascioloides magna (Trematoda: Fasciolidae): intraspecific variation and differentiation from Fasciola hepatica. J Parasitol 94:58–67CrossRefPubMedGoogle Scholar
  17. Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, Wittwer C (2004) Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem 50:1156–1164CrossRefPubMedGoogle Scholar
  18. Liew M, Seipp M, Durtschi J, Margraf RL, Dames S, Erali M, Voelkerding K, Wittwer C (2007) Closed-tube SNP genotyping without labeled probes/a comparison between unlabeled probe and amplicon melting. Am J Clin Pathol 127:341–348CrossRefPubMedGoogle Scholar
  19. Majoros G, Sztojkov V (1994) Appearance of the large American liver fluke Fascioloides magna (Bassi, 1875) (Trematoda: Fasciolata) in Hungary. Parasitol Hung 27:27–38Google Scholar
  20. Marinculić A, Džakula N, Janicky Z, Lućinger S, Živićniak T (2002) Appearance of American liver fluke (Fascioloides magna Bassi, 1875) in Croatia—a case report. Vet Archiv 72:319–325Google Scholar
  21. Montgomery J, Wittwer CT, Palais R, Zhou L (2007) Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nat Protoc 2:59–66CrossRefPubMedGoogle Scholar
  22. Nicolas L, Milon G, Prina E (2002) Rapid differentiation of Old World Leishamia species by LightCycler polymerase chain reaction and melting curve analysis. J Microbiol Methods 51:295–299CrossRefPubMedGoogle Scholar
  23. Novobilský A, Horáčková E, Hirtová L, Modrý D, Koudela B (2007) The giant liver fluke Fascioloides magna (Bassi, 1875) in cervids in the Czech Republic and potential of its spreading to Germany. Parasitol Res 100:549–553CrossRefPubMedGoogle Scholar
  24. Pangasa A, Jex AR, Campbell BE, Bott NJ, Whipp M, Hogg G, Stevens MA, Gasser RB (2009) High resolution melting-curve (HRM) analysis for the diagnosis of cryptosporidiosis in humans. Mol Cell Probes 23:10–15CrossRefPubMedGoogle Scholar
  25. Pornprasert S, Phusua A, Suanta S, Saetung R, Sanguansermsri T (2008) Detection of alpha-thalassemia-1 Southeast Asian type using real-time gap-PCR with SYBR Green1 and high resolution melting analysis. Eur J Haematol 80:510–514CrossRefPubMedGoogle Scholar
  26. Prathomtanapong P, Pornprasert S, Phusua A, Suanta S, Saetung R, Sanguansermsri T (2009) Detection and identification of beta-thalassemia 3.5 kb deletion by SYBR Green1 and high resolution melting analysis. Eur J Haematol 82:159–160CrossRefPubMedGoogle Scholar
  27. Pybus MJ (2001) Liver flukes. In: Samuel WM, Pybus MJ, Kocan AA (eds) Parasitic diseases of wild mammals, 2nd edn. Iowa State Press, Iowa City, pp 121–149CrossRefGoogle Scholar
  28. Radvansky J, Resko P, Surovy M, Minarik G, Ficek A, Kadasi L (2010) High-resolution melting analysis for genotyping of the myotonic dystrophy type1 associated Alu insertion/deletion polymorphism. Anal Biochem 398:126–128CrossRefPubMedGoogle Scholar
  29. Rajský D, Patus A, Bukovjan K (1994) Prvý nález Fascioloides magna (Bassi, 1875) na Slovensku. Slov Vet Čas 19:29–30Google Scholar
  30. Reed GH, Wittwer CT (2004) Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem 50:1748–1754CrossRefPubMedGoogle Scholar
  31. Ririe KM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245:154–160CrossRefPubMedGoogle Scholar
  32. Robinson BS, Monis PT, Dobson PJ (2006) Rapid, sensitive, and discriminating identification of Naegleria spp. by real-time PCR and melting-curve analysis. Appl Environ Microbiol 72:5857–5863CrossRefPubMedGoogle Scholar
  33. Seipp MT, Durtschi JD, Liew MA, Williams J, Damjanovich K, Pont-Kingdon G, Lyon E, Voelkerding KV, Wittwer CT (2007) Unlabeled oligonucleotides as internal temperature controls for genotyping by amplicon melting. J Mol Diagn 9:284–289CrossRefPubMedGoogle Scholar
  34. Špakulová M, Rajský D, Sokol J, Vodňanský M (2003) Giant liver fluke (Fascioloides magna), an important liver parasite of ruminants. PaRPRESS, BratislavaGoogle Scholar
  35. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment throughout sequence weighting, position specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680CrossRefPubMedGoogle Scholar
  36. Ullrich K (1930) Über das Vorkommen von seltenen oder wening bekannten Parasiten der Säugetiere und Vögel in Böhmen und Mähren. Prager Arch Tiermed 10:19–43Google Scholar
  37. Willmore C, Holden JA, Zhou L, Tripp S, Wittwer CT, Layfield LJ (2004) Detection of c-kit-activating mutations in gastrointestinal stromal tumors by high-resolution amplicon melting analysis. Am J Clin Pathol 122:206–216CrossRefPubMedGoogle Scholar
  38. Winkelmayer R, Prosl H (2001) Riesenleberegel—jetzt auch bei uns? Österreichs Weidwerk 3:42–44Google Scholar
  39. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860CrossRefPubMedGoogle Scholar
  40. Zhou L, Vandersteen J, Wang L, Fuller T, Taylor M, Palais B, Wittweret CT (2004) High-resolution DNA melting curve analysis to establish HLA genotypic identity. Tissue Antigens 64:156–164CrossRefPubMedGoogle Scholar
  41. Zhou L, Wang L, Palais R, Pryor R, Wittwer CT (2005) High-resolution DNA melting analysis for simultaneous mutation scanning and genotyping in solution. Clin Chem 51:1770–1777CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ján Radvánský
    • 1
    • 3
  • Eva Bazsalovicsová
    • 2
    Email author
  • Ivica Králová-Hromadová
    • 2
  • Gabriel Minárik
    • 1
    • 4
  • Ľudevít Kádaši
    • 1
    • 3
  1. 1.Department of Molecular Biology, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  2. 2.Parasitological InstituteSlovak Academy of Sciences040 01KošiceSlovakia
  3. 3.Institute of Molecular Physiology and GeneticsSlovak Academy of SciencesBratislavaSlovakia
  4. 4.Institute of Molecular Biomedicine, Faculty of MedicineComenius University in BratislavaBratislavaSlovakia

Personalised recommendations