Parasitology Research

, Volume 107, Issue 6, pp 1421–1427 | Cite as

Modulation of immunity in mice with latent toxoplasmosis—the experimental support for the immunosuppression hypothesis of Toxoplasma-induced changes in reproduction of mice and humans

  • Šárka Kaňková
  • Vladimír Holáň
  • Alena Zajícová
  • Petr Kodym
  • Jaroslav FlegrEmail author
Original Paper


The immunosuppression hypothesis suggests that the increased sex ratio in mice and women with latent toxoplasmosis, retarded embryonic growth in the early phases of pregnancy, prolonged pregnancy of Toxoplasma-infected women, and increased prevalence of toxoplasmosis in mothers of children with Down syndrome can be explained by the presumed immunosuppressive effects of latent toxoplasmosis. Here, we searched for indices of immunosuppression in mice experimentally infected with Toxoplasma gondii. Our results showed that mice in the early phase of latent infection exhibited temporarily increased production of interleukin (IL)-12 and decreased production of IL-10. In accordance with the immunosuppression hypothesis, the mice showed decreased production of IL-2 and nitric oxide and decreased proliferation reaction (synthesis of DNA) in the mixed lymphocyte culture in the early and also in the late phases of latent toxoplasmosis. Since about 30% of the world population are latently infected by T. gondii, the toxoplasmosis-associated immunosuppression might have serious public health consequences.


Nitric Oxide Down Syndrome Spleen Cell Infected Mouse Toxoplasmosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by grant no. 151/2006/B-Bio/PrF from the Grant Agency of Charles University and grant nos. 0021620828 and 0021620858 from the Ministry of Education, Youth and Sports of the Czech Republic. The experiments comply with the current laws of Czech Republic.


  1. Alexander J, Hunter CA (1998) Immunoregulation during toxoplasmosis. Chem Immunol 70:81–102CrossRefPubMedGoogle Scholar
  2. Alexander J, Roberts CW, Walker W, Reichmann G, Hunter CA (2000) The immunology of Toxoplasma gondii infection in the immune-competent host. In: Ambroise-Thomas P, Petersen E (eds) Congenital toxoplasmosis. Springer, Paris, pp 69–82Google Scholar
  3. Beatie CP (1982) The ecology of toxoplasmosis. Ecol Dis 1:13–20Google Scholar
  4. Blader IJ, Saeij JP (2009) Communication between Toxoplasma gondii and its host: impact on parasite growth, development, immune evasion, and virulence. APMIS 117:458–476CrossRefPubMedGoogle Scholar
  5. Brandao GP, Melo MN, Gazzinelli RT, Caetano BC, Ferreira AM, Silva LA, Vitor RVA (2009) Experimental reinfection of BALB/c mice with different recombinant type I/III strains of Toxoplasma gondii: involvement of IFN-gamma and IL-10. Mem Inst Oswaldo Cruz 104:241–245PubMedGoogle Scholar
  6. Costa da Silva R, Langoni H (2009) Toxoplasma gondii: host–parasite interaction and behavior manipulation. Parasitol Res 105:893–898CrossRefGoogle Scholar
  7. Dzitko K, Malicki S, Komorowski J (2008) Effect of hyperprolactinaemia on Toxoplasma gondii prevalence in humans. Parasitol Res 102:723–729CrossRefPubMedGoogle Scholar
  8. Flegr J, Hrdá Š, Kodym P (2005) Influence of latent toxoplasmosis on human health. Folia Parasitol 52:199–204PubMedGoogle Scholar
  9. Green LC, Wagner DA, Glogowski J (1982) Analysis of nitrate, nitrite and [15N]nitrate in biologic fluids. Anal Biochem 126:131–138CrossRefPubMedGoogle Scholar
  10. Hostomská L, Jírovec O, Horáčková M, Hrubcová M (1957) Účast toxoplasmické infekce matky při vniku mongoloidismu dítěte (The role of toxoplasmosis in the mother in the development of mongolism in the child). Českoslov Pediat 12:713–723Google Scholar
  11. Kaňková Š, Flegr J (2007) Longer pregnancy and slower fetal development in women with latent "asymptomatic" toxoplasmosis. BMC Infect Dis 7:114. doi: 10.1007/s00114-006-0166-2 CrossRefPubMedGoogle Scholar
  12. Kaňková Š, Šulc J, Flegr J (2010) Increased pregnancy weight gain in women with latent toxoplasmosis and RhD-positivity protection against this effect. Parasitology doi: 20602855
  13. Kaňková Š, Šulc J, Nouzová K, Fajfrlík K, Frynta D, Flegr J (2007a) Women infected with parasite Toxoplasma have more sons. Naturwissenschaften 94:122–127CrossRefPubMedGoogle Scholar
  14. Kaňková Š, Kodym P, Frynta D, Vavřinová R, Kuběna A, Flegr J (2007b) Influence of latent toxoplasmosis on the secondary sex ratio in mice. Parasitology 134:1709–1717PubMedGoogle Scholar
  15. Kodym P, Blažek K, Malý M, Hrdá Š (2002) Pathogenesis of experimental toxoplasmosis in mice with strains differing in virulence. Acta Parasitol 47:239–248Google Scholar
  16. Krackow S (1995) The developmental asynchrony hypothesis for sex ratio manipulation. J Theor Biol 176:273–280CrossRefPubMedGoogle Scholar
  17. Ondriska F, Čatár G, Vozarová G (2003) The significance of complement fixation test in clinical diagnosis of toxoplasmosis. Brat Lekár Listy 104:189–196Google Scholar
  18. Remington JS, Krahenbuhl JL (1982) Immunology of Toxoplasma gondii. In: Nahmias AJ, O’Reilly J (eds) Immunology of human infection, part II. Plenum, New York, pp 327–371Google Scholar
  19. Sheskin DJ (2003) Handbook of parametric and nonparametric statistical procedures, 3rd edn. Chapman and Hall/CRC, Boca Raton, pp 1079–1090Google Scholar
  20. Siegel S, NJ CJR (1988) Non parametric statistics. Mc Graw-Hill, New York, pp 254–262Google Scholar
  21. Tenter AM, Heckeroth AR, Weiss LM (2000) Toxoplasma gondii: from animals to humans. Int J Parasitol 30:1217–1258CrossRefPubMedGoogle Scholar
  22. Ulku K, Tuncay C, Raika KT, Cemil C, Ulfet DN (2008) Malondialdehyde, glutathione and nitric oxide levels in Toxoplasma gondii seropositive patients. Korean J Parasitol 46:293–295CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Šárka Kaňková
    • 1
  • Vladimír Holáň
    • 2
  • Alena Zajícová
    • 2
  • Petr Kodym
    • 3
  • Jaroslav Flegr
    • 1
    Email author
  1. 1.Department of Philosophy and History of Science, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  2. 2.Institute of Molecular GeneticsAcademy of SciencesPrague 4Czech Republic
  3. 3.National Reference Laboratory for ToxoplasmosisNational Institute of Public HealthPrague 10Czech Republic

Personalised recommendations