Parasitology Research

, Volume 107, Issue 5, pp 1137–1150 | Cite as

Differentiation of Myxobolus spp. (Myxozoa: Myxobolidae) infecting roach (Rutilus rutilus) in Hungary

  • Kálmán MolnárEmail author
  • Szilvia Marton
  • Csaba Székely
  • Edit Eszterbauer
Original Paper


During a survey on fishes from Hungarian freshwaters, the occurrence of eight Myxobolus species was registered in roach (Rutilus rutilus L.). Most species had a specific location within the fish host. Of the known species infecting roach, the intramuscularly developing species Myxobolus pseudodispar was found to be the most common. Besides Myxobolus intimus and Myxobolus diversicapsularis infecting the capillary network of gill lamellae, Myxobolus feisti infecting the cartilaginous gill rays were observed. Of the “muelleri-type” Myxobolus spp, Myxobolus rutili and Myxobolus sommervillae sp. n. formed elongated plasmodia in the gill filaments outside and inside the arteria efferens, respectively, while Myxobolus wootteni sp. n. developed cysts in fins. Plasmodia and spores of Myxobolus fundamentalis sp. n. were detected in the cartilaginous gill arch under the basis of gill filaments. Despite similarities of some species in spore morphology, 18S rDNA sequences and phylogenetic analyses showed clear differences among all species examined. The findings of the study demonstrate that morphologically similar spores could only be correctly identified by considering the location of plasmodia and the genetic characters of the myxozoan species.


Gill Filament Polar Capsule Polar Filament Rutilus Rutilus Spore Morphology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The study was supported by the Hungarian Scientific Research Fund (OTKA, projects no. T45891, K75873 and K71837). The authors thank Ms. Györgyi Pataki for preparing drawings and histological slides.


  1. Abdel-Ghaffar F, Toukhy A, Al-Quarashi S, Al-Rasheid KAS, Abdel-Baki AS, Hegazy A, Bashtar A-R (2008) Five new myxosporean species (Myxozoa: Myxosporea) infecting the Nile Tilapia) Oreochromis niloticus in Bahr Shebin, Nile Tributary, Nile Delta, Egypt. Parasitol Res 103:1197–1205CrossRefPubMedGoogle Scholar
  2. Ali MA, Abdel-Baki AS, Sakran T, Entzeroth R, Abdel-Ghaffar F (2007) Myxobolus lubati n. sp. (Myxosporea: Myxobolidae), a new parasite of haffara seabream Rhabdosargus haffara (Forsskal, 1775), Red Sea, Egypt: a light and electron transmission microscopy. Parasitol Res 100:819–827CrossRefPubMedGoogle Scholar
  3. Alvarez-Pellitero P, Molnár K, Sitja-Bobadilla A, Cs S (2002) Comparative ultrastructure of the actinosporean stages of Myxobolus bramae and Myxobolus pseudodispar (Myxosporea). Parasitol Res 88:198–207CrossRefPubMedGoogle Scholar
  4. Andree KB, Székely C, Molnár K, Gresoviac SJ, Hedrick RP (1999) Relationships among members of the genus Myxobolus (Myxozoa: Bivalvidae) based on small subunit ribosomal RNA sequences. J Parasitol 85:68–74CrossRefPubMedGoogle Scholar
  5. Baska F (1986) Histological studies on the development of Myxobolus pseudodispar Gorbunova, 1936 in the roach (Rutilus rutilus). Acta Vet Hung 35:251–257Google Scholar
  6. Baska F, Voronin VN, Eszterbauer E, Müller L, Sz M, Molnár K (2009) Occurrence of two myxosporean species, Myxobolus hakyi sp. n. and Hoferellus pulvinatus sp. n., in Pangasianodon hypophthalmus fry imported from Thailand to Europe as ornamental fish. Parasitol Res 105:1391–1398CrossRefPubMedGoogle Scholar
  7. Cone D, Marcogliese DJ, Russel R (2004) The myxozoan fauna of the spottail shiner in the Great Lakes basin: membership, richness, and geographical distribution. J Parasitol 90:921–932CrossRefPubMedGoogle Scholar
  8. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890CrossRefPubMedGoogle Scholar
  9. Donec ZS, Shulman SS (1984) Knidosporidii (Cnidosporidia). In: Bauer ON (ed) Key to the determination of parasites of freshwater fishes of the USSR Vol. 1. Nauka, Leningrad, pp 88–251, in RussianGoogle Scholar
  10. Eiras JC, Molnár K, Lu YS (2005) Synopsis of the genus Myxobolus Bütschli, 1882 (Myxozoa: Myxosporea: Myxobolidae). Syst Parasitol 61:1–46CrossRefPubMedGoogle Scholar
  11. Eiras JC, Monteiro CM, Brasil-Sato MC (2010) Myxobolus franciscoi (Myxozoa: Myxosporea: Myxobolidae), a parasite of Prochilodus argenteus (Actinopterygii: Prochilodontidae) from the Upper Sao Francisco River, Brazil, with a revision of Myxobolus spp. from South America. Zoologia 27:131–137Google Scholar
  12. Eszterbauer E (2002) Molecular biology can differentiate morphologically indistinguishable myxosporean species: Myxobolus elegans and M. hungaricus. Acta Vet Hung 50:59–62CrossRefPubMedGoogle Scholar
  13. Eszterbauer E (2004) Genetic relationship among gill-infecting Myxobolus species (Myxosporea) of cyprinids: molecular evidence of importance of tissue-specificity. Dis Aquat Org 58:35–40CrossRefPubMedGoogle Scholar
  14. Eszterbauer E, Székely C (2004) Molecular phylogeny of the kidney-parasitic Sphaerospora renicola from common carp (Cyprinus carpio) and Sphaerospora sp. from goldfish (Carassius auratus auratus). Acta Vet Hung 52:469–478CrossRefPubMedGoogle Scholar
  15. Eszterbauer E, Marton S, Rácz OZ, Letenyei M, Molnár K (2006) Morphological and genetic differences among actinosporean stages of fish-parasitic myxosporeans (Myxozoa): difficulties of species identification. Syst Parasitol 65:97–114CrossRefPubMedGoogle Scholar
  16. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  17. Hallett SL, Diamant A (2001) Ultrastructure and small-subunit ribosomal DNA sequence of Henneguya lesteri n. sp. (Myxosporea), a parasite of sand whiting Sillago analis (Sillaginidae) from the coast of Queensland, Australia. Dis Aquat Org 46:197–212CrossRefPubMedGoogle Scholar
  18. Hallett SL, Atkinson SD, Erséus C, El-Matbouli M (2005) Dissemination of triactinomyxons (Myxozoa) via oligochaetes used as live food for aquarium fishes. Dis Aquat Org 65:137–152CrossRefPubMedGoogle Scholar
  19. Hallett SL, Atkinson SD, Erséus C, El-Matbouli M (2006) Myxozoan parasites disseminated via oligochaete worms as live food for aquarium fishes: descriptions of aurantiactinomyxon and raabeia actinospore types. Dis Aquat Org 69:213–225CrossRefPubMedGoogle Scholar
  20. Hillis DM, Dixon T (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Quart Rev Biol 66:411–453CrossRefPubMedGoogle Scholar
  21. Kaur H, Singh R (2010) One new myxosporidian species, Myxobolus slendrii sp. nov., and one known species, M. punjabensis Gupta and Khera, 1989, infecting freshwater fishes in wetlands of Punjab, India. Parasitol Res 106:1043–1047CrossRefPubMedGoogle Scholar
  22. Landsberg JJ, Lom J (1991) Taxonomy of the genera of the Myxobolus/Myxosoma group (Myxobolidae: Myxosporea), current listing of species and revision of synonyms. Syst Parasitol 18:165–186CrossRefGoogle Scholar
  23. Lom J, Dyková I (1992) Protozoan parasites of fishes, volume 26 (Developments in aquaculture and fisheries science). Elsevier, Amsterdam, p 315Google Scholar
  24. Longshaw M, Frear P, Feist SW (2003) Myxobolus buckei sp n. (Myxozoa), a new pathogenic parasite from the spinal column of three cyprinid fishes from the United Kingdom. Folia Parasitol 50:251–262PubMedGoogle Scholar
  25. Molnár K (1994) Comments on the host, organ and tissue specificity of fish myxosporeans and on the types of their intrapiscine development. Parasitol Hung 27:5–20Google Scholar
  26. Molnár K, Eszterbauer E, Székely C, Dán Á, Harrach B (2002) Morphological and molecular biological studies on intramuscular Myxobolus spp. of cyprinid fish. J Fish Dis 25:643–652CrossRefGoogle Scholar
  27. Molnár K, Marton S, Eszterbauer E, Székely C (2006) Comparative morphological and molecular studies on Myxobolus spp. infecting chub from the River Danube, Hungary, and description of M. muellericus sp. n. Dis Aquat Org 73:49–61CrossRefPubMedGoogle Scholar
  28. Molnár K, Marton S, Eszterbauer E, Székely C (2007) Description of Myxobolus gayerae n. sp. and redescription of Myxobolus leuciscine infecting the European chub from the Hungarian stretch of the river Danube. Dis Aquat Org 78:147–1543CrossRefPubMedGoogle Scholar
  29. Molnár K, Cech G, Székely C (2008) Myxobolus species infecting the cartilaginous rays of the gill filaments in cyprinid fishes. Acta Parasitol 53:330–338CrossRefGoogle Scholar
  30. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  31. ácz OZ, Székely C, Molnár K (2004) Intraoligochaete development of Myxobolus intimus (Myxosporea: Myxobolidae), a gill myxosporean of the roach (Rutilus rutilus). Folia Parasitol 51:199–207PubMedGoogle Scholar
  32. Reuss H (1906) Neue Myxosporidien von Süsswasserfischen. Bull Acad Imp Sci St-Petersbg Ser 5:199–205Google Scholar
  33. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  34. Shulman SS (1966) Myxosporidia of the fauna of the USSR. Nauka, Moscow, p 504, in RussianGoogle Scholar
  35. Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5:233–241CrossRefPubMedGoogle Scholar
  36. Swofford DL (2001) PAUP*: phylogenetic analysis using parsimony (*and other methods).Version 4.0b8. Sinauer Associates, SunderlandGoogle Scholar
  37. Székely C, Molnár K, Eszterbauer E, Baska F (1999) Experimental detection of the actinospores of Myxobolus pseudodispar (Myxosporea: Myxobolidae) in oligochaete alternate host. Dis Aquat Org 38:219–224CrossRefPubMedGoogle Scholar
  38. Székely C, Molnár K, Rácz O (2001) Complete developmental cycle of Myxobolus pseudodispar (Gorbunova) (Myxosporea: Myxobolidae). J Fish Dis 24:461–468CrossRefGoogle Scholar
  39. Whipps CM, Adlard RD, Bryant MS, Lester RJ, Findlay V, Kent ML (2003) First report of three Kudoa species from eastern Australia: Kudoa thyrsites from Mahi mahi (Coryphaena hippurus), Kudoa amamiensis and Kudoa minithyrsites n. sp. from sweeper (Pempheris ypsilychnus). J Eukaryot Microbiol 50:215–219CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Kálmán Molnár
    • 1
    Email author
  • Szilvia Marton
    • 1
  • Csaba Székely
    • 1
  • Edit Eszterbauer
    • 1
  1. 1.Veterinary Medical Research InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations