Advertisement

Parasitology Research

, Volume 107, Issue 5, pp 1049–1065 | Cite as

Species discrimination and phylogenetic inference of 17 Chinese Leishmania isolates based on internal transcribed spacer 1 (ITS1) sequences

  • Bin-Bin Yang
  • Xian-Guang Guo
  • Xiao-Su Hu
  • Jian-Guo Zhang
  • Lin Liao
  • Da-Li ChenEmail author
  • Jian-Ping ChenEmail author
Original Paper

Abstract

Leishmaniasis is a geographically widespread disease, caused by protozoan flagellates of the genus Leishmania. This disease still remains endemic in China, especially in the west and northwest frontier regions. To date, the phylogenetic relationships among Chinese Leishmania isolates are still unclear, and the possible taxonomic diversity remains to be established. In this study, the ITS1–5.8S fragments of ten isolates collected from different foci in China were determined. To infer the phylogenetic relationships among them, seven sequences of Chinese Leishmania isolates retrieved from GenBank were also included. Both parsimony and Bayesian analyses reveal an unexpected but strongly supported clade comprising eight newly determined isolates, which is sister to other members of subgenus Leishmania. In combination with genetic distance analysis, this provides evidence of the occurrence of an undescribed species of Leishmania. Our results also suggest that (1) the isolate IPHL/CN/77/XJ771 from Bachu County, Xinjiang Uygur Autonomous Region is not Leishmania infantum but Leishmania donovani; (2) the status referring to an isolate MRHO/CN/88/KXG-2 from a great gerbil in Karamay as Leishmania turanica, formerly based on multilocus enzyme electrophoresis, is recognized; (3) an earlier finding demonstrating the L. donovani identity of isolate MHOM/CN/80/801 from Kashi city is corroborated; (4) the three isolates from eastern Jiashi County, Xinjiang Uygur Autonomous Region, causing desert type of zoonotic visceral leishmaniasis (see Wang et al., Parasitol Int (in press), 2010), belong to L. donovani instead of L. infantum. In addition, the results of this study make an important contribution to understanding the heterogeneity and relationships of Chinese Leishmania isolates, further indicating that the isolates from China may have had a more complex evolutionary history than expected.

Keywords

Maximum Parsimony Visceral Leishmaniasis Leishmaniasis Cutaneous Leishmaniasis Leishmania Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundations of China (30771883, 30800094) and the National Project of Important Infectious Diseases (2008-ZX10004-011). X-G Guo was supported by the National Natural Science Foundation of China (30700062). We thank Dianmei Lu and Zhibiao Xu for kinkly help with collecting some important references.

References

  1. Ababneh F, Jermiin LS, Ma C, Robinson J (2006) Matched-pairs tests of homogeneity with applications to homologous nucleotide sequences. Bioinformatics 22:1225–1231CrossRefPubMedGoogle Scholar
  2. Alam MZ, Kuhls K, Schweynoch C, Sundar S, Rijal S, Shamsuzzaman AK, Raju BV, Salotra P, Dujardin JC, Schönian G (2009a) Multilocus microsatellite typing (MLMT) reveals genetic homogeneity of Leishmania donovani strains in the Indian subcontinent. Infect Genet Evol 9:24–31CrossRefPubMedGoogle Scholar
  3. Alam MZ, Kovalenko DA, Kuhls K, Nasyrova RM, Ponomareva VI, Fatullaeva AA, Razakov SA, Schnur LF, Schönian G (2009b) Identification of the agent causing visceral leishmaniasis in Uzbeki and Tajiki foci by analysing parasite DNA extracted from patients' Giemsa-stained tissue preparations. Parasitology 136:981–986CrossRefPubMedGoogle Scholar
  4. Al-Kandari WY, Al-Bustan SA (2010) Molecular identification of Probolocoryphe uca (Sarkisian, 1957; Digenea: Microphallidae) from Kuwait Bay using ITS1 and ITS2 sequences. Parasitol Res 106:1189–1195CrossRefPubMedGoogle Scholar
  5. Asato Y, Oshiro M, Myint CK, Yamamoto Y, Kato H, Marco JD, Mimori T, Gomez EA, HashiguchiY UH (2009) Phylogenic analysis of the genus Leishmania by cytochrome b gene sequencing. Exp Parasitol 121:352–361CrossRefPubMedGoogle Scholar
  6. Bañuls A-L, Hide M, Tibayrenc M (2002) Evolutionary genetics and molecular diagnosis of Leishmania species. Trans R Soc Trop Med Hyg 96(Suppl 1):S9–S13CrossRefPubMedGoogle Scholar
  7. Bañuls A-L, Hide M, Prugnolle F (2007) Leishmania and the leishmaniases: a parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans. Adv Parasitol 64:1–109CrossRefPubMedGoogle Scholar
  8. Berzunza-Cruz M, Cabrera N, Crippa-Rossi M, Cabrera TS, Pérez-Montfort R, Becker I (2002) Polymorphism analysis of the internal transcribed spacer and small subunit of ribosomal RNA genes of Leishmania mexicana. Parasitol Res 88:918–925CrossRefPubMedGoogle Scholar
  9. Chen D-L, Wang G-T, Yao W-J, Nie P (2007) Utility of ITS1–5.8S–ITS2 sequences for species discrimination and phylogenetic inference of two closely related bucephalid digeneans (Digenea: Bucephalidae): Dollfustrema vaneyi and Dollfustrema hefeiensis. Parasitol Res 101:791–800CrossRefPubMedGoogle Scholar
  10. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660CrossRefPubMedGoogle Scholar
  11. Dávila AMR, Memen H (2000) Internal-transcribed-spacer (ITS) sequences used to explore phylogenetic relationships within Leishmania. Ann Trop Med Parasitol 94:651–654CrossRefPubMedGoogle Scholar
  12. De Meeûs T, Durand P, Renaud F (2003) Species concepts: what for? Trend Parasitology 19:425–427Google Scholar
  13. De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886CrossRefPubMedGoogle Scholar
  14. Desjeux P (2004) Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27:305–318CrossRefPubMedGoogle Scholar
  15. Dessimoz C, Gil M (2010) Phylogenetic assessment of alignments reveals neglected tree signal in gaps. Genome Biol 11:R37CrossRefPubMedGoogle Scholar
  16. El Tai NO, Osman OF, El Fari M, Presber W, Schönian G (2000) Genetic heterogeneity of ribosomal internal transcribed spacer (ITS) in clinical samples of Leishmania donovani spotted on filter papers as revealed by single-strand conformation polymorphisms (SSCP) and sequencing. Trans R Soc Trop Med Hyg 94:575–579CrossRefPubMedGoogle Scholar
  17. El Tai NO, El Fari M, Mauricio I, Miles MA, Oskam L, El Safi SH, Presber WH, Schönian G (2001) Leishmania donovani: intraspecific polymorphisms of Sudanese isolates revealed by PCR-based analyses and DNA sequencing. Exp Parasitol 97:35–44CrossRefPubMedGoogle Scholar
  18. Felsensten JP (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  19. Fraga J, Montalvo AM, de Doncker S, Dujardin J-C, der Auwera GV (2010) Phylogeny of Leishmania species based on the heat-shock protein 70 gene. Infect Genet Evol 10:238–245CrossRefPubMedGoogle Scholar
  20. Fryauff DJ, Hanafi HA, Klena JD, Hoel DF, Appawu M, Rogers W, Puplampu N, Odoom S, Kweku M, Koram K, Wilson MD, Raczniak G, Boakye D (2006) ITS-1 DNA sequence confirmation of Leishmania major as a cause of cutaneous leishmaniasis from an outbreak focus in the Ho district southeastern Ghana. Am J Trop Med Hyg 75:502–504PubMedGoogle Scholar
  21. Gadagkar SR, Kumar S (2005) Maximum likelihood outperforms maximum parsimony even when evolutionary rates are heterotachous. Mol Biol Evol 22:2139–2141CrossRefPubMedGoogle Scholar
  22. Gaucher EA, Miyamoto MM (2005) A call for likelihood phylogenetics even when the process of sequence evolution is heterogeneous. Mol Phylogenet Evol 35:624–636CrossRefGoogle Scholar
  23. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224CrossRefPubMedGoogle Scholar
  24. Guan L-R, Yang Y-Q, Ren H-Y, Chai J-J (1992a) Eight cutaneous Leishmaniasis cases detected in Karamay, Xinjiang Uygur Autonomous Region, China. Southeast Asian J Trop Med Public Health 23:803–804PubMedGoogle Scholar
  25. Guan L-R, Yang Y-Q, Xu Y-X, Wu J-T (1992b) Leishmaniasis in Karamay XI. The development of cutaneous leishmaniasis in monkey and man experimentally infected with Leishmania from Karamay big gerbil. Endemic Diseases Bulletin 10:263–266 (in Chinese with English abstract)Google Scholar
  26. Guan L-R, Yang Y-Q, Ren H-Y, Shen W-X (1995) Discovery and study of Leishmania turanica for the first time in China. Bull World Health Organ 69:595–601Google Scholar
  27. Hickson RE, Simon C, Perrey SW (2000) The performance of several multiple-sequence alignment programs in relation to secondary-structure features for an rRNA sequence. Mol Biol Evol 17:530–539PubMedGoogle Scholar
  28. Ho JWK, Adams CE, Lew JB, Maatthews TJ, Ng CC, Shahabi-Sirjan A, Tan LH, Zhao Y, Easteal S, Wilson SR, Jermin LS (2006) SeqVis: visualization of compositional heterogeneity in large alignments of nucleotides. Bioinformatics 22:2162–2163CrossRefPubMedGoogle Scholar
  29. Hu X-S, Bu L, Ma Y, Wang Y, Jing B, Yi T (2002) Difference in DNA sequences in SSU rDNA variable regions among pathogens isolated from different epidemic foci of visceral leishmaniasis in China. Chin Med J (Engl) 115:1457–1459Google Scholar
  30. Huelsenbeck JP, Larget B, Miller RE, Ronquist F (2002) Potential applications and pitfalls of Bayesian inference of phylogeny. Syst Biol 51:673–688CrossRefPubMedGoogle Scholar
  31. Ibrahim ME, Barker DC (2001) The origin and evolution of the Leishmania donovani complex as inferred from a mitochondrial cytochrome oxidase II gene sequence. Infect Genet Evol 1:61–68CrossRefPubMedGoogle Scholar
  32. Jamjoom MB, Ashford RW, Bates PA, Chance ML, Kemp SJ, Watts PC, Noyes HA (2004) Leishmania donovani is the only cause of visceral leishmaniasis in East Africa; previous descriptions of L. infantum and “L. archibaldi” from this region are a consequence of convergent evolution in the isoenzyme data. Parasitology 129:399–409CrossRefPubMedGoogle Scholar
  33. Jeffreys H (1935) Some tests of significance, treated by the theory of probability. Proc Cambridge Philos Soc 31:201–222CrossRefGoogle Scholar
  34. Jeffreys H (1961) Theory of probability. Oxford University Press, LondonGoogle Scholar
  35. Jermiin LS, Jayaswal V, Ababneh F, Robinson J (2008) Phylogenetic model evaluation. In: Keith J (ed) Methods in molecular biology: bioinformatics. Humana Press, TotowaGoogle Scholar
  36. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795CrossRefGoogle Scholar
  37. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  38. Kuhls K, Mauricio IL, Pratlong F, Presber W, Schönian G (2005) Analysis of ribosomal DNA internal transcribed spacer sequences of the Leishmania donovani complex. Microbes Infect 7:1224–1234CrossRefPubMedGoogle Scholar
  39. Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50:913–925CrossRefPubMedGoogle Scholar
  40. Lin R-Q, Dong S-J, Nie K, Wang C-R, Song H-Q, Li A-X, Huang W-Y, Zhu X-Q (2007) Sequence analysis of the first internal transcribed spacer of rDNA supports the existence of the intermediate Fasciola between F. hepatica and F. gigantica in mainland China. Parasitol Res 101:813–817CrossRefPubMedGoogle Scholar
  41. Lu H-G, Zhong L, Guan L-R, Qu J-Q, Hu X-S, Chai J-C, Xu Z-B, Wang C-T, Chang K-P (1994) Separation of Chinese Leishmania isolates into five genotypes by kinetoplast and chromosomal DNA heterogeneity. Am J Trop Med Hyg 50:763–770PubMedGoogle Scholar
  42. Lu F-L, Hu X-S, Jing B-Q, Luo P, Lin F-Q (1997) Analysis of kDNA of Leishmania isolates from hill and plain foci of China. Chin J Parasitol Parasit Dis 5:101–103 (in Chinese with English abstract)Google Scholar
  43. Lu F-L, Hu X-S, Jing B-Q, Ma Y (1998) Analysis of nuclear DNA gene types of Leishmania isolates from hilly and plain foci of China. Chin J Parasitol Parasit Dis 16:432–435 (in Chinese with English abstract)Google Scholar
  44. Lu D-M, Hu X-S, Qiao Z-D (2001) Analysis of Leishmania species and strains from China by RAPD technique. Chin J Parasitol Parasit Dis 19:290–293 (in Chinese with English abstract)Google Scholar
  45. Lukeš J, Mauricio IL, Schönian G, Dujardin J-C, Soteriadou K, Dedet J-P, Kuhls K, Tintaya KWQ, Jirků M, Chocholová E, Haralambous C, Pratlong F, Oborník M, Horák A, Ayala FJ, Miles MA (2007) Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proc Natl Acad Sci USA 104:9375–9380CrossRefPubMedGoogle Scholar
  46. Montalvo AM, Fraga J, Monzote L, Montano I, de Doncker S, Dujardin JC, der Auwera GV (2010) Heat-shock protein 70 PCR-RFLP: a universal simple tool for Leishmania species discrimination in the New and Old World. Parasitology. doi: 10.1017/S0031182010000089 PubMedGoogle Scholar
  47. Müller K (2005) SeqState: primer design and sequence statistics for phylogenetic DNA data sets. Appl Bioinform 4:65–69CrossRefGoogle Scholar
  48. Noyes HA, Arana BA, Chance ML, Maingon R (1997) The Leishmania hertigi (Kinetoplastida; Trypanosomatidae) complex and the lizard Leishmania: their classification and evidence for a neotropical origin of the Leishmania-Endotrypanum clade. J Eukaryot Microbiol 44:511–517CrossRefPubMedGoogle Scholar
  49. Nylander JAA, Wilgenbusch JC, Warren DL, Swofford DL (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24:581–583CrossRefPubMedGoogle Scholar
  50. Parvizi P, Ready PD (2008) Nested PCRs and sequencing of nuclear ITS-rDNA fragments detect three Leishmania species of gerbils in sandflies from Iranian foci of zoonotic cutaneous leishmaniasis. Trop Med Int Health 13:1159–1171CrossRefPubMedGoogle Scholar
  51. Parvizi P, Moradi G, Akbari G, Farahmand M, Ready PD, Piazak N, Assmar M, Amirkhani A (2008) PCR detection and sequencing of parasite ITS-rDNA gene from reservoirs host of zoonotic cutaneous leishmaniasis in central Iran. Parasitol Res 103:1273–1278CrossRefPubMedGoogle Scholar
  52. Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, Peters N, Adlem E, Tivey A, Aslett M, Kerhornou A, Ivens A, Fraser A, Rajandream MA, Carver T, Norbertczak H, Chillingworth T, Hance Z, Jagels K, Moule S, Ormond D, Rutter S, Squares R, Whitehead S, Rabbinowitsch E, Arrowsmith C, White B, Thurston S, Bringaud F, Baldauf SL, Faulconbridge A, Jeffares D, Depledge DP, Oyola SO, Hilley JD, Brito LO, Tosi LR, Barrell B, Cruz AK, Mottram JC, Smith DF, Berriman M (2007) Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39:839–847CrossRefPubMedGoogle Scholar
  53. Philippe H, Zhou Y, Brinkmann H, Rodrigue N, Delsuc F (2005) Heterotachy and long-branch attraction in phylogenetics. BMC Evol Biol 5:50CrossRefPubMedGoogle Scholar
  54. Piarroux R, Fontes M, Perasso R, Gambarelli F, Joblet C, Dumon H, Auilici M (1995) Phylogenetic relationships between Old World Leishmania strains revealed by analysis of a repetitive DNA sequence. Mol Biochem Parasitol 73:249–252CrossRefPubMedGoogle Scholar
  55. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approach. Syst Biol 53:793–808CrossRefPubMedGoogle Scholar
  56. Posada D, Crandal KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45CrossRefPubMedGoogle Scholar
  57. Posda D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefGoogle Scholar
  58. Raftery AE (1996) Hypothesis testing and model selection. In: Gilks WR, Spiegelhalter DJ, Richardson S (eds) Markov chain Monte Carlo in practice. Chapman and Hall, London, pp 163–188Google Scholar
  59. Rambaut A, Drummond AJ (2009) Tracer v1.5, available from http://beast.bio.ed.ac.uk/Tracer
  60. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  61. Rotureau B, Ravel C, Couppie P, Pratlong F, Nacher M, Dedet JP, Carme B (2006) Use of PCR-restriction fragment length polymorphism analysis to identify the main New World Leishmania species and analyze their taxonomic properties and polymorphism by application of the assay to clinical samples. J Clin Microbiol 44:459–467CrossRefPubMedGoogle Scholar
  62. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  63. Schönian G, Akuffo H, Lewin S, Maasho K, Nylén S, Pratlong F, Eisenberger CL, Schnur LF, Presber W (2000) Genetic variability within the species Leishmania aethiopica does not correlate with clinical variations of cutaneous Leishmaniasis. Mol Biochem Parasitol 106:239–248CrossRefPubMedGoogle Scholar
  64. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464CrossRefGoogle Scholar
  65. Shehata MG, Samy AM, Doha S, Fahmy AR, Kaldas RM, Furman BD, Villinski JT (2009) First report of Leishmania tropica from a classical focus of L. major in North-Sinai Egypt. Am J Trop Med Hyg 81:213–218PubMedGoogle Scholar
  66. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analysis. Syst Biol 49:369–381CrossRefPubMedGoogle Scholar
  67. Spencer M, Susko E, Roger AJ (2005) Likelihood, parsimony, and heterogeneous evolution. Mol Biol Evol 22:1161–1164CrossRefPubMedGoogle Scholar
  68. Strelkova MV, Shurkhal AV, Kellina OI, Eliseev LN, Evans DA, Peters W, Chapman CJ, Le Blancq SM, van Eys GJ (1990) A new species of Leishmania isolated from the great gerbil Rhombomys opimus. Parasitology 101:327–335CrossRefPubMedGoogle Scholar
  69. Suchard MA, Weiss RE, Sinsheimer JS (2001) Bayesian selection of continuous time Markov chain evolutionary models. Mol Biol Evol 18:1001–1013Google Scholar
  70. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (* and other methods), version 4. Sinauer, Sunderland, MAGoogle Scholar
  71. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  72. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedGoogle Scholar
  73. Tibayrenc M (1998) Genetic epidemiology of parasitic protozoa and other infectious agents: the need for an integrated approach. Int J Parasitol 28:85–104CrossRefPubMedGoogle Scholar
  74. Wang J, Qu J-Q, Guan L-R (1964a) A study on the Leishmania parasites of the great gerbil in northwest China. Acta Parasitologica Sinica 1:105–117 (in Chinese with English abstract)Google Scholar
  75. Wang J, Xiong G-H, Hu Y-D, Lui P-Z, Niu H-F, Sai S-Y (1964b) The Leishmania infection found in Rhombomys opimus its transmission and relation to man. Acta Parasitologica Sinica 1:17–23 (in Chinese with English abstract)Google Scholar
  76. Wang J-Y, Gao C-H, Yang Y-T, Chen H-T, Zhu X-H, Lv S, Chen S-B, Tong S-X, Steinmann P, Ziegelbauer K, Zhou X-N (2010) An outbreak of the desert sub-type of zoonotic visceral leishmaniasis in Jiashi, Xinjiang Uygur Autonomous Region, People’s Republic of China. Parasitol Int. doi: 10.1016/j.parint.2010.04.002 Google Scholar
  77. WHO (1990) Control of leishmaniases. World Health Organization, GenevaGoogle Scholar
  78. Xia X, Lemey P (2009) Assessing substitution saturation with DAMBE. In: Lemey P (ed) The phylogenetic handbook. Cambridge University Press, Cambridge, pp 611–626Google Scholar
  79. Xia X, Xie Z (2001) DAMBE: data analysis in molecular biology and evolution. J Hered 92:371–373CrossRefPubMedGoogle Scholar
  80. Xia X, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Mol Phylogenet Evol 26:1–7CrossRefPubMedGoogle Scholar
  81. Xu Z-B, Le Blancq S, Evans DA, Peters W (1984) The characterization by isoenzyme electrophoresis of Leishmania isolated in the People’s Republic of China. Trans R Soc Trop Med Hyg 78:689–693CrossRefPubMedGoogle Scholar
  82. Xu Z-B, Liu Z-T, Long J-Y, Chai J-J, Chen W-K (1989) Further characterization of Chinese Leishmania isolates by isoenzyme electrophoresis. Chin Med J (Engl) 102:679–685Google Scholar
  83. Zemanova E, Jirku M, Mauricio IL, Miles MA, Lukeš J (2004) Genetic polymorphism within the Leishmania donovani complex: correlation with geographic origin. Am J Trop Med Hyg 70:613–617PubMedGoogle Scholar
  84. Zheng C-J, Wang L-Y, Xu X, Zhu X-H, Wu W-P (2009) Visceral Leishmaniasis in China during 2004–2007. Chin J Parasitol Parasit Dis 27:344–346 (in Chinese with English abstract)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Bin-Bin Yang
    • 1
    • 2
  • Xian-Guang Guo
    • 3
  • Xiao-Su Hu
    • 1
    • 2
  • Jian-Guo Zhang
    • 1
    • 2
  • Lin Liao
    • 1
    • 2
  • Da-Li Chen
    • 1
    • 2
    Email author
  • Jian-Ping Chen
    • 1
    • 2
    Email author
  1. 1.Department of Parasitology, West China School of Preclinical and Forensic MedicineSichuan UniversityChengduChina
  2. 2.Animal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceSichuan UniversityChengduChina
  3. 3.Chengdu Institute of BiologyChinese Academy of SciencesChengduChina

Personalised recommendations