Parasitology Research

, Volume 107, Issue 2, pp 469–473 | Cite as

Detection of Toxoplasma gondii, Neospora caninum, and Encephalitozoon cuniculi in the brains of common voles (Microtus arvalis) and water voles (Arvicola terrestris) by gene amplification techniques in western Austria (Vorarlberg)

  • Hans-Peter Fuehrer
  • Ingrid Blöschl
  • Christian Siehs
  • Andreas Hassl
Short Communication

Abstract

Knowledge about the protozoan parasite fauna in voles (Arvicolinae) in Austria is rather limited, although some of these pathogens play an important role in human medicine and cause zoonoses (e.g., Toxoplasma gondii and Encephalitozoon cuniculi). Others are of relevance in veterinary medicine and have a negative economic impact (e.g., Neospora caninum). Two hundred sixty-eight common voles (Microtus arvalis) and 86 water voles (Arvicola terrestris) from the most western Austrian province, Vorarlberg, were analyzed with PCR techniques for infections with T. gondii, N. caninum, and E. cuniculi. Brain tissues of two common voles (0.7%) and of four water voles (4.7%) tested positive for T. gondii. Furthermore, analysis of four common voles (1.5%) and two water voles (2.3%) generated positive findings for N. caninum, and brain tissues of 16 common voles (6%) and six water voles (7%) tested positive for E. cuniculi. Accordingly, this study not only demonstrates the autochthonous existence of the zoonotic parasites T. gondii and E. cuniculi in voles in Vorarlberg, it also provides the first evidence of an occurrence of N. caninum in animals of the subfamily Arvicolinae, and it is an additional contribution to investigations of the sylvatic cycle of N. caninum.

Notes

Acknowledgments

We would like to thank Scott Northrup for proofreading. We are very grateful to Univ. Prof. Dr. Anja Joachim and Mag. Hanna L. Worliczek (Veterinary Parasitology Vienna, University of Veterinary Medicine Vienna, Austria) for the contribution of Neospora caninum DNA. Furthermore, we gratefully acknowledge the excellent technical assistance of Mrs. Ingrid Feuereis.

Ethical standards

All voles were caught in 2004 in accordance with the Vorarlberger provincial law as published in Lg Bl. Nr. 50/2002.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aspöck H, Hassl A (1990) Parasitic infections in HIV patients in Austria: first results of a long-term study. Zentralbl Bakteriol 272(4):540–546PubMedGoogle Scholar
  2. Aspöck H, Auer H, Walochnik J (2002) Toxoplasmose: Harmlose Unpässlichkeit für Gesunde—lebensbedrohliche Krankheit für Ungeborene und für AIDS-Patienten. Denisia 6:179–199, GermanGoogle Scholar
  3. Biró Z, Lanszki J, Szemethy L, Heltai M, Randi E (2005) Feeding habits of feral domestic cats (Felis catus), wild cats (Felis silvestris) and their hybrids: trophic niche overlap among cat groups in Hungary. J Zool Lond 266:187–196CrossRefGoogle Scholar
  4. Burg JL, Grover CM, Pouletty P, Boothroyd JC (1989) Direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by polymerise chain reaction. J Clin Microbiol 27(8):1787–1792PubMedGoogle Scholar
  5. Didier ES, Didier PJ, Snowden KF, Shadduck JA (2000) Microsporidiosis in mammals. Microbes Infect 2(6):709–720CrossRefPubMedGoogle Scholar
  6. Dubey JP (2003) Review of Neospora caninum and neosporosis in animals. Korean J Parasitol 41(1):1–16CrossRefPubMedGoogle Scholar
  7. Dubey JP, Schares G, Ortega-Mora LM (2007) Epidemiology and control of neosporosis and Neospora caninum. Clin Microbiol Rev 20(2):327–367CrossRefGoogle Scholar
  8. Edelhofer R (2004) Seroepidemiologische Studien zur Toxoplasmose aus human- und veterinärmedizinischer Sicht—eine Retrospektive der letzten 25 Jahre in Österreich. Denisia 13:411–417, GermanGoogle Scholar
  9. Ferroglio E, Pasino M, Romano A, Grande D, Pregel P, Trisciuoglio A (2007) Evidence of Neospora caninum DNA in wild rodents. Vet Parasitol 148(3–4):346–349CrossRefPubMedGoogle Scholar
  10. Frank C (1978) Protozoa of small mammals in the Neusidlersee region. Angew Parasitol 19(3):137–154PubMedGoogle Scholar
  11. Franzen C, Müller A (1999) Molecular techniques for detection, species differentiation, and phylogenetic analysis of microsporidia. Clin Microbiol Rev 12(2):243–285PubMedGoogle Scholar
  12. Gondim LF (2006) Neospora caninum in wildlife. Trends Parasitol 22(6):247–252CrossRefPubMedGoogle Scholar
  13. Hejlícek K, Literák I, Nezval J (1997) Toxoplasmosis in wild mammals from the Czech Republic. J Wildl Dis 33(3):480–485PubMedGoogle Scholar
  14. Hersteinsson P, Gunnarsson E, Hjartardóttir S, Skírnisson K (1993) Prevalence of Encephalitozoon cuniculi antibodies in terrestrial mammals in Iceland, 1986 to 1989. J Wildl Dis 29(2):341–344PubMedGoogle Scholar
  15. Hill D, Dubey JP (2002) Toxoplasma gondii: transmission, diagnosis and prevention. Clin Microbiol Infect 8(10):634–640, ReviewCrossRefPubMedGoogle Scholar
  16. Huang CC, Yang CH, Watanabe Y, Liao YK, Ooi HK (2004) Finding of Neospora caninum in the wild brown rat (Rattus norvegicus). Vet Res 35(3):283–290CrossRefPubMedGoogle Scholar
  17. Hughes JM, Williams RH, Morley EK, Cook DA, Terry RS, Murphy RG, Smith JE, Hide G (2006) The prevalence of Neospora caninum and co-infection with Toxoplasma gondii by PCR analysis in naturally occurring mammal populations. Parasitology 132(Pt1):29–36PubMedGoogle Scholar
  18. Jenkins MC, Parker C, Hill D, Pickney RD, Dyer R, Dubey JP (2007) Neospora caninum detected in feral rodents. Vet Parasitol 143(2):161–165CrossRefPubMedGoogle Scholar
  19. Katzwinkel-Wladarsch S, Lieb M, Helse W, Löscher T, Rinder H (1996) Direct amplification and species determination of microsporidian DNA from stool specimens. Trop Med Int Health 1(3):373–378CrossRefPubMedGoogle Scholar
  20. Katzwinkel-Wladarsch S, Deplazes P, Weber R, Löscher T, Rinder H (1997) Comparison of polymerase chain reaction with light microscopy for detection of microsporidia in clinical specimens. Eur J Clin Microbiol Infect Dis 16(1):7–10CrossRefPubMedGoogle Scholar
  21. Lanszki J (2005) Diet composition of red fox during rearing in a moor: a case study. Folia Zool 54(1–2):213–216Google Scholar
  22. Mathis A, Weber R, Deplazes P (2005) Zoonotic potential of the microsporidia. Clin Microbiol Rev 18(3):423–445CrossRefPubMedGoogle Scholar
  23. Müller N, Zimmermann V, Hentrich B, Gottstein B (1996) Diagnosis of Neospora caninum and Toxoplasma gondii infection by PCR and DNA hybridisation immunoassay. J Clin Microbiol 34(11):2850–2852PubMedGoogle Scholar
  24. Muller-Doblies UU, Herzog K, Tanner I, Mathis A, Deplazes P (2002) First isolation and characterisation of Encephalitozoon cuniculi from a free-ranging rat (Rattus norvegicus). Vet Parasitol 107(4):279–285CrossRefPubMedGoogle Scholar
  25. Murphy TM, Walochnik J, Hassl A, Moriarty J, Mooney J, Toolan D, Sanchez-Miguel C, O’Loughlin A, McAuliffe A (2007) Study of the prevalence of Toxoplasma gondii and Neospora caninum and molecular evidence of Encephalitozoon (Septata) intestinalis infections in red foxes (Vulpes vulpes) in rural Ireland. Vet Parasitol 146(3–4):227–234CrossRefPubMedGoogle Scholar
  26. Reperant LA, Hegglin D, Tanner I, Fischer C, Deplazes P (2009) Rodents as shared indicators for zoonotic parasites of carnivores in urban environments. Parasitology 136(3):329–337CrossRefPubMedGoogle Scholar
  27. Romano A, Trisciuoglio A, Grande D, Ferroglio E (2009) Comparison of two PCR protocols for the detection of Neospora caninum DNA in rodents. Vet Parasitol 159(2):159–161CrossRefPubMedGoogle Scholar
  28. Sobrino R, Dubey JP, Pabón M, Linarez N, Kwok OC, Millán J, Arnal MC, Luco DF, López-Gatius F, Thulliez P, Gortázar C, Almería S (2008) Neospora caninum antibodies in wild carnivores from Spain. Vet Parasitol 155(3–4):190–197CrossRefPubMedGoogle Scholar
  29. Wanha K, Edelhofer R, Gabler-Eduardo C, Prosl H (2005) Prevalence of antibodies against Neospora caninum and Toxoplasma gondii in dogs and foxes in Austria. Vet Parasitol 128(3–4):189–193CrossRefPubMedGoogle Scholar
  30. Wapenaar W, Jenkins MC, O’Handley RM, Barkema HW (2006) Neospora caninum-like oocysts observed in feces of free-ranging red foxes (Vulpes vulpes) and coyotes (Canis latrans). J Parasitol 92:1270–1274CrossRefPubMedGoogle Scholar
  31. Weber JM, Dailly L (1998) Food habits and ranging behaviour of a group of farm cats (Felis catus) in a Swiss mountainous area. J Zool Lond 245:234–237CrossRefGoogle Scholar
  32. Werner H, Aspöck H, Janitschke K (1973) Serological studies on the occurrence of Toxoplasma gondii among wild living mammalian in eastern Austria. Zentralbl Bakteriol Orig A 224(2):257–263PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Hans-Peter Fuehrer
    • 1
  • Ingrid Blöschl
    • 1
  • Christian Siehs
    • 2
  • Andreas Hassl
    • 1
  1. 1.Department of Specific Prophylaxis and Tropical Medicine, Center for Physiology, Pathophysiology and ImmunologyMedical University of ViennaViennaAustria
  2. 2.Department of Biomedical EngineeringUniversity of Applied Sciences Technikum WienViennaAustria

Personalised recommendations