Parasitology Research

, Volume 107, Issue 3, pp 585–592 | Cite as

Evaluation of botanical extracts against Haemaphysalis bispinosa Neumann and Hippobosca maculata Leach

  • Abdul Abduz Zahir
  • Abdul Abdul Rahuman
  • Asokan Bagavan
  • Thirunavukkarasu Santhoshkumar
  • Razack Rafi Mohamed
  • Chinnaperumal Kamaraj
  • Govindasamy Rajakumar
  • Gandhi Elango
  • Chidambaram Jayaseelan
  • Sampath Marimuthu
Original Paper

Abstract

In the current study, in vitro evaluation of crude hexane, chloroform, ethyl acetate, acetone, and methanol extracts of Anisomeles malabarica (L.) R. Br., Gloriosa superba L., Psidium guajava L., Ricinus communis L., and Solanum trilobatum L. exhibited acaricidal and insecticidal activities against the adult of Haemaphysalis bispinosa Neumann (Acarina: Ixodidae) and hematophagous fly Hippobosca maculata Leach (Diptera: Hippoboscidae). All plant extracts showed moderate toxic effect on parasites after 24 h of exposure; the complete inhibition (100%) at the maximum concentration tested (3,000 ppm) was obtained in acetone, methanol, hexane, and chloroform extracts of A. malabarica; methanol, chloroform, and ethyl acetate extracts of G. superba; acetone extract of P. guajava; methanol extract of R. communis; and leaf hexane extract of S. trilobatum; and the lowest inhibition (38%) was recorded for the seed hexane extract of S. trilobatum. The highest parasite dead was found in leaf acetone and methanol extracts of A. malabarica, seed methanol of G. superba, leaf methanol of R. communis against H. bispinosa (LC50 = 466.15, 719.78, 476.06, and 243.87 ppm; LC90 = 1,837.96, 2,014.47, 1,904.36, and 2,692.15 ppm), leaf hexane and chloroform extracts of A. malabarica, seed chloroform and ethyl acetate of G. superba, leaf acetone of P. guajava, leaf methanol of R. communis, and leaf hexane extract of S. trilobatum against H. maculata (LC50 = 495.61, 414.81, 360.02, 479.37, 646.30, 506.13, and 432.77 ppm; LC90 = 1,914.84, 1,956.59, 1,598.54, 1,636.41, 2,192.73, 1,982.66, and 1,872.33 ppm), respectively. These results suggest that the leaf methanol of R. communis, chloroform extracts of A. malabarica, and chloroform extract of G. superba have the potential to be used as an ideal eco-friendly approach for the control of the H. bispinosa and H. maculata. Therefore, this study provides first report on the parasitic activities of plant extracts from Southern India.

Notes

Acknowledgments

The authors are grateful to C. Abdul Hakeem College Management, Dr. S. Mohammed Yousuff, Principal, and Dr. K. Abdul Subhan, HOD of Zoology Department for their help and suggestion. The authors wish to thank Dr. A. Sangaran, Department of Parasitology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India for identification of parasites.

References

  1. Ahmadi M, Moharramipour S, Mozdarani H, Negahban M (2008) Combined effect of gamma radiation and Perovskia atriplicifolia for the control of red flour beetle, Tribolium castaneum. Commun Agric Appl Biol Sci 73(3):643–650PubMedGoogle Scholar
  2. Amer A, Mehlhorn H (2006) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:473–477CrossRefPubMedGoogle Scholar
  3. Bagavan A, Kamaraj C, Elango G, Zahir AA, Rahuman AA (2009) Adulticidal and larvicidal efficacy of some medicinal plant extracts against tick, fluke and mosquitoes. Vet Parasitol 166:286–292CrossRefPubMedGoogle Scholar
  4. Bansal SK, Singh KV, Sherwani MR (2009) Evaluation of larvicidal efficacy of Solanum xanthocarpum storage against vector mosquitoes in north-western Rajasthan. J Environ Biol 30(5 Suppl):883–888PubMedGoogle Scholar
  5. Broglio-Micheletti SM, Valente EC, Souza LA, Dias ND, Araújo AM (2009) Plant extracts in control of Rhipicephalus (Boophilus) microplus (Canestrini, 1887) (Acari: Ixodidae) in laboratory. Rev Bras Parasitol Vet 18(4):44–48PubMedGoogle Scholar
  6. Cheng SS, Huang CG, Chen YJ, Yu JJ, Chen WJ, Chang ST (2009) Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species. Bioresour Technol 100(1):452–456CrossRefPubMedGoogle Scholar
  7. Choochote W, Rongsriyam K, Pitasawat B, Jitpakdi A, Rattanachanpichai E, Junkum A, Tuetun B, Chaiwong P (2004) Evaluation of the colchicine-like activity of Gloriosa superba-extracted fractions for mosquito (Diptera: Culicidae) cytogenetic study. J Med Ent 41:672–676CrossRefGoogle Scholar
  8. Chowdhury N, Laskar S, Chandra G (2008) Mosquito larvicidal and antimicrobial activity of protein of Solanum villosum leaves. BMC Complement Altern Med 8:62–67CrossRefPubMedGoogle Scholar
  9. De Castro JJ (1997) Sustainable tick and tick borne disease control in livestock improvement in developing countries. Vet Parasitol 71:77–97CrossRefPubMedGoogle Scholar
  10. Deb DB (1979) Solanaceae in India. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the solanaceae. Academic, London, pp 87–112Google Scholar
  11. Devendra C (1995) Animal production systems in South East and East Asia: potential challenges for research. In: Proc Global agenda for livestock research, ILRI, January 18–20, pp 41–48Google Scholar
  12. Erler F, Polat E, Demir H, Cetin H, Erdemir T (2009) Control of the mushroom phorid fly, Megaselia halterata (Wood), with plant extracts. Pest Manag Sci 65(2):144–149CrossRefPubMedGoogle Scholar
  13. FAO (2004) Ticks: acaricide resistance: diagnosis management and prevention in: guidelines resistance management and integrated parasite control in ruminants. FAO Animal Production and Health Division, RomeGoogle Scholar
  14. Fernandes FF (2001) Toxicological effects and resistance to pyretroids in Boophilus microplus from Goia´s Brasil. Arq Bras Med Vet Zootec 53:548–552Google Scholar
  15. Fernandes FF, Freitas EPS (2007) Acaricidal activity of an oleoresinous extract from Copaifera reticulata (Leguminosae: Caesalpinioideae) against larvae of the southern cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet Parasitol 147(1–2):150–154CrossRefGoogle Scholar
  16. Fernandes FF, Freitas EPS, Costa AC, Silva IG (2005) Larvicidal potential of Sapindus saponaria to control the cattle tick Boophilus microplus. Pesq Agropec Bras 40:1243–1245Google Scholar
  17. Finnie JF, Van Staden J (1994) Gloriosa superba L. (Flame Lily): micropropagation and in vitro production of colchicines. In: Bajaj YPS (eds), Biotechnology in agriculture and forestry, vol. 26: Medicinal and Aromatic Plants VI, pp 146–166 (Chapter X)Google Scholar
  18. Ghosh S, Bansal GC, Gupta SC, Ray D, Khan MQ, Irshad H, Shahiduzzaman M, Seitzer U, Ahmed JS (2007) Status of tick distribution in Bangladesh, India and Pakistan. Parasitol Res 101(2):S207–S216CrossRefPubMedGoogle Scholar
  19. Goven B, Gilbert J, Gratzek J (1980) Apparent drug resistance to the organophosphate dimethyl (2, 2, 2-trichloro-1-hydroxyethyl) phosphonate by monogenetic trematodes. J Wildl Dis 16(3):343–346PubMedGoogle Scholar
  20. Govindan S, Viswanathan S, Vijayasekaran V, Alagappan R (2004) Further studies on the clinical efficacy of Solanum xanthocarpum and Solanum trilobatum in bronchial asthma. Phytothera Res 18:805–809CrossRefGoogle Scholar
  21. Goze I, Alim A, Dag S, Tepe B, Polat ZA (2009) In vitro amoebicidal activity of Salvia staminea and Salvia caespitosa on Acanthamoeba castellanii and their cytotoxic potentials on corneal cells. J Ocul Pharmacol Ther 25(4):293–298CrossRefPubMedGoogle Scholar
  22. Ivan A (1998) Chemical constituents, traditional and modern uses. In: Ross I (ed) Medicinal plants of the world. Ross Humana, Totowa, pp 375–395Google Scholar
  23. Jacobson RL, Schlein Y (1999) Lectins and toxins in the plant diet of Phlebotomus papatasi (Diptera: Psychodidae) can kill Leishmania major promastigotes in the sandfly and in culture. Ann Trop Med Parasitol 93(4):351–356CrossRefPubMedGoogle Scholar
  24. Kamaraj C, Rahuman AA, Bagavan A (2008) Antifeedant and larvicidal effects of plant extracts against Spodoptera litura (F.), Aedes aegypti L. and Culex quinquefasciatus Say. Parasitol Res 103(2):325–331CrossRefPubMedGoogle Scholar
  25. Kamaraj C, Rahuman AA, Bagavan A, Elango G, Rajakumar G, Zahir AA, Marimuthu S, Santhoshkumar T, Jayaseelan C (2010) Evaluation of medicinal plant extracts against blood-sucking parasites. Parasitol Res 106:1403–1412CrossRefPubMedGoogle Scholar
  26. Khan H, Khan MA, Mahmood T, Choudhary MI (2008) Antimicrobial activities of Gloriosa superba Linn (Colchicaceae) extracts. J Enzyme Inhib Med Chem 23(6):855–859CrossRefPubMedGoogle Scholar
  27. Kweka EJ, Mosha F, Lowassa A, Mahande A, Kitau J, Matowo J, Massenga C, Tenu F, Feston E, Lyatuu E, Mboya M, Mndeme R, Chuwa G, Temu EA (2008a) Ethnobotanical study of some of mosquito repellent plants in north-eastern Tanzania. Malar J 7:152Google Scholar
  28. Kweka EJ, Mosha FW, Lowassa A, Mahande AM, Mahande MJ, Massenga CP, Tenu F, Lyatuu EE, Mboya MA, Temu EA (2008b) Longitudinal evaluation of Ocimum and other plants effects on the feeding behavioral response of mosquitoes (Diptera: Culicidae) in the field in Tanzania. Parasites Vectors 1:42Google Scholar
  29. Lima MG, Maia IC, Sousa BD, Morais SM, Freitas SM (2006) Effect of stalk and leaf extracts from Euphorbiaceae species on Aedes aegypti (Diptera, Culicidae) larvae. Rev Inst Med Trop São Paulo 48(4):211–214PubMedGoogle Scholar
  30. Madhavan S, Balu S (1999) Ethnobotanical studies on Solanum trilobatum Linn.: an Indian drug plant. J Econ Taxon Bot 23(1999):43–46Google Scholar
  31. Marshall CJ (1999) Use of Supaverm® for the treatment of monogenean infestation in koi carp (Cyprinus carpio). Fish Vet J 4:33–37Google Scholar
  32. Minjauw B, Mc Leod A (2003) Tick-borne diseases and poverty. The impact of ticks and tick-borne diseases on the livelihood of small scale and marginal livestock owners in India and eastern and southern Africa. DFID Animal Health Programme, Centre for Tropical Veterinary Medicine, University of Edinburgh, EdinburghGoogle Scholar
  33. Mohan PV, Devi KS (1997) Effect of Sobatum on tumour development and chemically induced carcinogenesis. Cancer Lett 112:219–223CrossRefGoogle Scholar
  34. Mohan PV, Rao JM, Kutty MAS, Devi KS (1998) Cytotoxicity of extracts of Solanum trilobatum and anticarcinogenic activity of Sobatum. Biomedicine 18:106–111Google Scholar
  35. Mohan L, Sharma P, Srivastava CN (2005) Evaluation of Solanum xanthocarpum extracts as mosquito larvicides. J Environ Biol 26(2):399–401PubMedGoogle Scholar
  36. Nisha M, Kalyanasundaram M, Paily KP, Abidha VP, Balaraman K (2007) In vitro screening of medicinal plant extracts for macrofilaricidal activity. Parasitol Res 100(3):575–579CrossRefPubMedGoogle Scholar
  37. Nundkumar N, Ojewole JA (2002) Studies on the antiplasmodial properties of some South African medicinal plants used as antimalarial remedies in Zulu folk medicine. Meth Find Exp Clin Pharmacol 24(7):397–401CrossRefGoogle Scholar
  38. Periyanayagam K, Nirmala Devi K, Suseela L, Uma A, Ismail M (2008) In vivo antimalarial activity of leaves of Plectranthus amboinicus (lour) spreng on Plasmodium berghei yoelii. J Commun Dis 40(2):121–125PubMedGoogle Scholar
  39. Puyvelde LV, Geysen D, Ayobangira FX, Hakizamungu E, Nshimiyimana A, Kalisa A (1985) Screening of medicinal plants of Rwanda for acaricidal activity. J Ethnopharmacol 13(2):209–215CrossRefPubMedGoogle Scholar
  40. Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008) Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 102(5):867–873CrossRefPubMedGoogle Scholar
  41. Rajkumar S, Jebanesan A (2004) Ovicidal activity of Solanum trilobatum Linn (Solanaceae) leaf extract against Culex quinquefasciatus Say and Culex tritaeniorhynchus Gile (Diptera: Culicidae). Int J Trop Insect Sci 24(4):340–342CrossRefGoogle Scholar
  42. Reddy PJ, Krishna D, Murthy US, Jamil K (1992) A microcomputer FORTRAN program for rapid determination of lethal concentration of biocides in mosquito control. CABIOS 8:209–213PubMedGoogle Scholar
  43. Regassa A (2000) The use of herbal preparations for tick control in western Ethiopia. J S Afr Vet Assoc 71(4):240–243PubMedGoogle Scholar
  44. Schmahl G, Mehlhorn H (1985) Treatment of fish parasites. 1. Praziquantel effective against Monogenea (Dactylogyrus vastator, Dactylogyrus extensus, Diplozoon paradoxum). Z Parasitenk 71:727–737CrossRefPubMedGoogle Scholar
  45. Schmahl G, Mehlhorn H, Haberkorn A (1988) Sym. triazinone (toltrazuril) effective against fish-parasitizing Monogenea. Parasitol Res 75(1):67–68CrossRefPubMedGoogle Scholar
  46. Sharma P, Mohan L, Srivastava CN (2004) Larval susceptibility of Ajuga remota against anopheline and culicine mosquitos. Southeast Asian J Trop Med Public Health 35(3):608–610PubMedGoogle Scholar
  47. Sing NC, Johnston LAY, Leatch G (1983) The economics of cattle tick control in the dry tropical Australia. Aust Vet J 60:37–39CrossRefPubMedGoogle Scholar
  48. Singh RK, Dhiman RC, Mittal PK (2007) Studies on mosquito larvicidal properties of Eucalyptus citriodora Hook (family—Myrtaceae). J Commun Dis 39(4):233–236PubMedGoogle Scholar
  49. Tadesse D, Eguale T, Giday M, Mussa A (2009) Ovicidal and larvicidal activity of crude extracts of Maesa lanceolata and Plectranthus punctatus against Haemonchus contortus. J Ethnopharmacol 122(2):240–244CrossRefPubMedGoogle Scholar
  50. Treves-Brown KM (1999) Availability of medicines for fish. Fish Vet J 4:40–55Google Scholar
  51. Upasani SM, Kotkar HM, Mendki PS, Maheshwari VL (2003) Partial characterization and insecticidal properties of Ricinus communis L. foliage flavonoids. Pest Manag Sci 59:1349–1354CrossRefPubMedGoogle Scholar
  52. van den Broek AH, Huntley JF, Halliwell RE, Machell J, Taylor M, Miller HR (2003) Cutaneous hypersensitivity reactions to Psoroptes ovis and Der p 1 in sheep previously infested with P. ovis—the sheep scab mite. Vet Immunol Immunopathol 91:105–117CrossRefPubMedGoogle Scholar
  53. Wall R (2007) Ectoparasites: future challenges in a changing world. Vet Parasitol 1481:62–74CrossRefGoogle Scholar
  54. Yadav R, Srivastava VK, Chandra R, Singh A (2002) Larvicidal activity of latex and stem bark of Euphorbia tirucalli plant on the mosquito Culex quinquefasciatus. J Commun Dis 34(4):264–269PubMedGoogle Scholar
  55. Zahir AA, Rahuman AA, Kamaraj C, Bagavan A, Elango G, Sangaran A, Kumar BS (2009) Laboratory determination of efficacy of indigenous plant extracts for parasites control. Parasitol Res 105:453–461CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Abdul Abduz Zahir
    • 1
  • Abdul Abdul Rahuman
    • 1
  • Asokan Bagavan
    • 1
  • Thirunavukkarasu Santhoshkumar
    • 1
  • Razack Rafi Mohamed
    • 1
  • Chinnaperumal Kamaraj
    • 1
  • Govindasamy Rajakumar
    • 1
  • Gandhi Elango
    • 1
  • Chidambaram Jayaseelan
    • 1
  • Sampath Marimuthu
    • 1
  1. 1.Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of ZoologyC.Abdul Hakeem CollegeVellore DistrictIndia

Personalised recommendations