Parasitology Research

, Volume 107, Issue 2, pp 381–388 | Cite as

Effect of bacterial metabolites on microsporidian Nosema ceranae and on its host Apis mellifera

  • Martín P. Porrini
  • M. Carina Audisio
  • Daniela C. Sabaté
  • Carolina Ibarguren
  • Sandra K. Medici
  • Edgardo G. Sarlo
  • P. Melisa Garrido
  • Martín J. Eguaras
Original Paper

Abstract

Nosemosis, a disease caused by a microsporidian infection, is one of the most frequently observed parasitic pathologies affecting adult honeybees. Presently, Nosema ceranae seems to be the main microsporidian infection in Apis mellifera. The antibiotic fumagillin is the only compound available to treat Nosema diseases; however, it is no longer licensed in most EU member states; therefore, the need to identify new molecules/substances prevails. The intent of this paper is to test bacterial metabolites by Bacillus and Enterococcus strains, isolated from bee midgut and honey. The toxicity on bees and the antiparasitic activity on N. ceranae were assessed under laboratory conditions. Results did not yield toxicity for the administered surfactin or bacteriocin concentrations. Spores exposed to direct contact with a particular surfactin revealed a significant infectivity reduction when inoculated on bees. This surfactin, administered ad libitum from the individuals’ emergence, led to a significant reduction in parasitosis development when bees were infected with untreated spores 7 days postemergence. Based on the results obtained, one of the surfactins is herein postulated as a molecule capable of reducing N. ceranae development, acting either by direct exposure to purified spores or incorporated into the digestive tract of the bee.

Notes

Acknowledgments

This research was supported by FONCyT, PICTR 890/2006, to M.E. We thank the support provided by the Animal Production Department, EEA INTA, Balcarce, and the Fares Taie Laboratories Food Division.

References

  1. Audisio MC, Oliver G, Apella MC (1999) Antagonistic effect of Ent. faecium J96 against human and poultry pathogenic salmonellae species. J Food Protect 62:751–755Google Scholar
  2. Audisio MC, Oliver G, Apella MC (2001) Effect of different complex carbon sources on growth and bacteriocin synthesis of Enterococcus faecium. Intl J Food Microbiol 63:235–241CrossRefGoogle Scholar
  3. Audisio MC, Terzolo HR, Apella MC (2005) Bacteriocin from honeybee beebread Enterococcus avium, active against Listeria monocytogenes. Appl Environ Microb 71(6):3373–3375CrossRefGoogle Scholar
  4. Audisio MC, Torres MJ, Sabaté DC, Ibarguren C, Apella MC (2010) Properties of different lactic acid bacteria isolated from Apis mellifera L. bee-gut. Microb Res. doi: 10.1016/j.micres-2010-01-003 Google Scholar
  5. Alippi AM, Reynaldi FJ (2006) Inhibition of the growth of Paenibacillus larvae, the causal agent of American foulbrood of honeybees, by selected strains of aerobic spore-forming bacteria isolated from apiarian sources. J Invertebr Pathol 91(3):141–146CrossRefPubMedGoogle Scholar
  6. Blatz W (1955) Nosemack Südwestdtsch Imker 7(12):358Google Scholar
  7. Cantwell GE (1970) Standard methods for counting Nosema spores. Amer. Bee j 110: 220-223Google Scholar
  8. Daba H, Pandian S, Gosselin JF, Simard RE, Huang J, Lacroix C (1991) Detection and activity of a bacteriocin produced by Leuconostoc mesenteroides. Appl Environ Microb 57:3450–3455Google Scholar
  9. Delbac F, Polonais V (2008) The microsporidian polar tube and its role in invasion. Subcell Biochem 47:208–220CrossRefPubMedGoogle Scholar
  10. Fenoy S, Rueda C, Higes M, Martín-Hernández R, Aguila C (2009) High resistance of Nosema ceranae, a parasite of honeybee, to temperature and desiccation. Appl Environ Microbiol 75(21):6886–6889. doi: 10.1128/AEM.01025-09 CrossRefPubMedGoogle Scholar
  11. Forsgren E, Fries I (2005) Acidic-benzoic feed and nosema disease. J Apia Sci 49(2):81–88Google Scholar
  12. Fries I, Forsgren E (2009) Nosema ceranae fungerar inte som Nosema apis. Nosema ceranae does not function as Nosema apis. Bitidningen 107:20–21Google Scholar
  13. Fries I, Feng F, Da Silva A, Slemenda SB, Pieniazek NJ (1996) Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee (Apis cerana) (Hymenotpera, Apidae). Eur J Protistol 32:356–365Google Scholar
  14. From C, Hormazabal V, Hardy SP, Granum PE (2007) Cytotoxicity in Bacillus mojavensis is abolished following loss of surfactin synthesis: implications for assessment of toxicity and food poisoning potential. Int J Food Microbiol 117:43–49CrossRefPubMedGoogle Scholar
  15. Furgala B, Bosch R (1970) The effect of Fumidil B, Nosemack and Humatin on Nosema apis. J Apic Res 9(2):79–85Google Scholar
  16. Giersch T, Berg T, Galea F, Hornitzky M (2009) Nosema ceranae infects honey bees (Apis mellifera) and contaminates honey in Australia. Apidol 40:117–123CrossRefGoogle Scholar
  17. Gilliam M (1978) Bacteria belonging to the genus Bacillus isolated from selected organs of queen honeybees, A. mellifera. J Invertebr Pathol 31:389–391CrossRefPubMedGoogle Scholar
  18. Gilliam M (1979) Microbiology of pollen and bee bread: the genus Bacillus. Apidol 10:269–274CrossRefGoogle Scholar
  19. Gilliam M, Prest DB (1978) Microbiology of feces of the larval honeybee, Apis mellifera. J Invertebr Pathol 31:389–391CrossRefPubMedGoogle Scholar
  20. Gilliam M, Valentine DK (1976) Bacteria isolated from the intestinal contents of foraging workers honeybees, Apis mellifera: the genus Bacillus. J Invertebr Pathol 28:275–276CrossRefGoogle Scholar
  21. Gontarski G, Wagner O (1954) Quantitative Versuche zur chemotherapeutischen Bekämpfung von Nosema apis Zander bei der Honigbiene, Arzneim. Forsch 4:161–168Google Scholar
  22. Higes M, Martín R, Meana A (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J Invertebr Pathol 92:81–83CrossRefGoogle Scholar
  23. Higes M, Martín-Hernández R, Garrido-Bailón E, García-Palencia P, Meana A (2008) Detection of infective osema ceranae (Microsporidia) spores in corbicular pollen of forager honeybees. J Invertebr Pathol 97:76–78CrossRefPubMedGoogle Scholar
  24. Jack RW, Tagg JR, Bibek R (1995) Bacteriocins from Gram-positive bacteria. Microbiol Rev 59:171–200PubMedGoogle Scholar
  25. Joshi S, Bharucha Ch, Desai AJ (2008) Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. Bioresour Technol 99:4603–4608CrossRefPubMedGoogle Scholar
  26. Katz E, Demain AL (1977) The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol Rev 41:449–474PubMedGoogle Scholar
  27. Klee J, Besana A, Genersch E, Gisder S, Nanetti A, Tam DQ, Chinh TX, Puerta F, Kryger P, Message D, Hatjina F, Korpela S, Fries I, Paxton R (2007) Widespread dispersal of the microsporidium Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J Invertebr Pathol 96:1–10CrossRefPubMedGoogle Scholar
  28. Liu TP (1988) Ultrastructural changes in Nosema apis in the midgut of the honeybee treated with thimerosal in vitro. Parasitol Res 74:492–494CrossRefGoogle Scholar
  29. Liu TPP, Myrick GR (1988) Deformities in the spore of Nosema apis as induced by itraconazole. Parasitol Res 75:498–502. doi: 10.1007/BF00930980 CrossRefGoogle Scholar
  30. Maistrello L, Lodesani M et al (2008) Screening of natural compounds for the control of nosema disease in honeybees (Apis mellifera). Apidologie 39:436–445CrossRefGoogle Scholar
  31. Martín-Hernández R, Meana A, Prieto L, Martínez Salvador A, Garrido-Bailón E, Higes M (2007) Outcome of colonization of Apis mellifera by Nosema ceranae. Appl Environ Microbiol 73(20):6331–6338CrossRefPubMedGoogle Scholar
  32. Mayack C, Naug D (2008) Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. J Invertebr Pathol. doi: 10.1016/j.jip-2008-12-001 PubMedGoogle Scholar
  33. Mottoul J (1996) Etude de l´acidification des nourritures contre Nosema apis Zander. La Belgique Apicole 2:39–43Google Scholar
  34. Nielsen P, Sorensen J (1997) Multi-target and médium independent fungal antagonisms by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol Ecol 22:183–192CrossRefGoogle Scholar
  35. Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563CrossRefPubMedGoogle Scholar
  36. Pohorecka K (2004) Laboratory studies on the effect of standardized Artemisia absinthium L. extract on Nosema apis infection in the worker Apis mellifera. J Apicul Sci 48 (2) 131–136Google Scholar
  37. Pooja S, Swaranjit SC (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22(3):142–146CrossRefGoogle Scholar
  38. Porrini MP (2008) Desarrollo de la parasitosis causada por Nosema ceranae (Microspora: Nosematidae) en individuos de Apis mellifera (Hymenoptera: Apidae) sometidos a diferentes dietas e inóculos de esporas” (Grade Thesis - Universidad Nacional de Mar del Plata)Google Scholar
  39. Rinderer, Thomas E (1976) Honey bees: individual feeding of large numbers of adult workers. J Econ Entomol 69(4):489–491Google Scholar
  40. Sabaté DC, Carrillo L, Audisio MC (2009) Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samples. Res Microbiol 160:163–169CrossRefGoogle Scholar
  41. Schlüter H (1957) Erfahrungen mit Nosemack Reizfütterung im Freien. Dtsch Bienenw 8(4):71–72Google Scholar
  42. Sichtova M, Haque MA, Vavra J, Canning EU, Robert-Gero M (1993) Evaluation of the antibiotic sinefungin as an antimicrosporidial drug. Fol Parasitol 40:85–91Google Scholar
  43. Sina M, Alastair G, Farmer M et al (2005) The new higher level classification of Eukaryotes with emphasis on the taxonomy of Protists. J Eukar Microbiol 52(5):399–451CrossRefGoogle Scholar
  44. Underwood RM, Currie RW (2009) Indoor winter fumigation with formic acid for control of Acarapis woodi (Acari: Tarsonemidae) and Nosema Disease, Nosema sp. J Econ Entomol 102(5):1729–1736. doi: 10.1603/029-102-0501 CrossRefPubMedGoogle Scholar
  45. Vaillant J (1989) Nourrissement au sirop de sucre acidifié. La santé de l´abeille 110:55–60Google Scholar
  46. Vollenbroich D, Özel M, Vater J, Kamp RM, Pauli G (1997) Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from bacillus subtilis. Biologicals 25:289–297CrossRefPubMedGoogle Scholar
  47. Williams GR, Sampson MA, Shutler D, Rogers REL (2008) Does fumagillin control the recently detected invasive parasite Nosema ceranae in western honey bees (Apis mellifera)? J Invertebr Pathol 99:342–344CrossRefPubMedGoogle Scholar
  48. Yücel B, Doğaroğlu M (2005) The impact of Nosema apis Z. infestation of honey bee (Apis mellifera L.) colonies after using different treatment methods and their effects on the population levels of workers and honey production on consecutive years. Pak J Biol Sci 8(8):1142–1145CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Martín P. Porrini
    • 1
    • 2
    • 5
  • M. Carina Audisio
    • 3
    • 4
  • Daniela C. Sabaté
    • 3
    • 4
  • Carolina Ibarguren
    • 3
    • 4
  • Sandra K. Medici
    • 1
    • 3
    • 5
  • Edgardo G. Sarlo
    • 1
    • 5
  • P. Melisa Garrido
    • 1
    • 5
  • Martín J. Eguaras
    • 1
    • 3
    • 5
  1. 1.Arthropods Laboratory FCEyN, UNMdPMar del PlataArgentina
  2. 2.FONCyTBuenos AiresArgentina
  3. 3.CONICETBuenos AiresArgentina
  4. 4.INIQUI, Universidad Nacional de SaltaSaltaArgentina
  5. 5.School of Exact and Natural SciencesUniversidad Nacional de Mar del PlataMar del PlataArgentina

Personalised recommendations