Parasitology Research

, Volume 107, Issue 2, pp 309–315 | Cite as

Leishmania mexicana promastigotes secrete a protein tyrosine phosphatase

  • Alma R. Escalona-Montaño
  • Daniel Pardavé-Alejandre
  • Rocely Cervantes-Sarabia
  • Patricia García-López
  • Manuel Gutiérrez-Quiroz
  • Laila Gutiérrez-Kobeh
  • Ingeborg Becker-Fauser
  • Maria M. Aguirre-García
Original Paper

Abstract

Leishmania mexicana is an intracellular protozoan parasite that infects macrophages and dendritic cells and causes a chronic cutaneous disease. Although many enzymatic activities have been reported in this parasite, the presence of kinases and phosphatases has been poorly studied. These enzymes control the phosphorylation and dephosphorylation of proteins. Specifically, protein tyrosine kinases phosphorylate tyrosine residues and protein tyrosine phosphatases (PTPases) dephosphorylate tyrosine residues. PTPase activities have been reported as pathogenic factors in various infectious microorganisms such as viruses, bacteria, and parasites. Also, it has been shown that the induction of one or more PTPase activities in macrophages represents an important pathogenicity factor in Leishmania. Recently, we reported a membrane-bound PTPase activity in promastigotes of Leishmania major. In the present work, we give evidence that promastigotes of L. mexicana are able to secrete a PTPase into the culture medium. Two antibodies: one monoclonal against the catalytic domains of the human placental PTPase 1B and a polyclonal rabbit anti-recombinant protein Petase7 from Trypanosoma brucei cross-reacted with a 50-kDa molecule. The anti-human PTPase 1B antibody depleted the enzymatic activity present in the conditioned medium. The pattern of sensitivity and resistance to specific PTPase and serine/threonine inhibitors showed that this enzyme is a protein tyrosine phosphatase.

References

  1. Aguirre-Garcia MM, Okhuysen PC (2007) Cryptosporidium parvum: identification and characterization of an acid phosphatase. Parasitol Res 101:85–89CrossRefPubMedGoogle Scholar
  2. Aguirre-Garcia MM, Anaya-Ruiz M, Talamas-Rohana P (2003) Membrane-bound acid phosphatase (MAP) from Entamoeba histolytica has phosphotyrosine phosphatase activity and disrupts the actin cytoskeleton of host cells. Parasitology 126:195–202CrossRefPubMedGoogle Scholar
  3. Aguirre-Garcia MM, Escalona-Montano AR, Bakalara N, Perez-Torres A, Gutierrez-Kobeh L, Becker I (2006) Leishmania major: detection of membrane-bound protein tyrosine phosphatase. Parasitology 132:641–649CrossRefPubMedGoogle Scholar
  4. Anaya-Ruiz M, Perez-Santos JL, Talamas-Rohana P (2003) An ecto-protein tyrosine phosphatase of Entamoeba histolytica induces cellular detachment by disruption of actin filaments in HeLa cells. Int J Parasitol 33:663–670CrossRefPubMedGoogle Scholar
  5. Baca OG, Roman MJ, Glew RH, Christner RF, Buhler JE, Aragon AS (1993) Acid phosphatase activity in Coxiella burnetii: a possible virulence factor. Infect Immun 61:4232–4239PubMedGoogle Scholar
  6. Bakalara N, Seyfang A, Baltz T, Davis C (1995) Trypanosoma brucei and Trypanosoma cruzi: life cycle-regulated protein tyrosine phosphatase activity. Exp Parasitol 81:302–312CrossRefPubMedGoogle Scholar
  7. Bakalara N, Santarelli X, Davis C, Baltz T (2000) Purification, cloning, and characterization of an acidic ectoprotein phosphatase differentially expressed in the infectious bloodstream form of Trypanosoma brucei. J Biol Chem 275:8863–8871CrossRefPubMedGoogle Scholar
  8. Bates PA, Dwyer DM (1987) Biosynthesis and secretion of acid phosphatase by Leishmania donovani promastigotes. Mol Biochem Parasitol 26:289–296CrossRefPubMedGoogle Scholar
  9. Bliska JB, Black DS (1995) Inhibition of the Fc receptor-mediated oxidative burst in macrophages by the Yersinia pseudotuberculosis tyrosine phosphatase. Infect Immun 63:681–685PubMedGoogle Scholar
  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  11. Chang KP, Reed SG, McGwire BS, Soong L (2003) Leishmania model for microbial virulence: the relevance of parasite multiplication and pathoantigenicity. Acta Trop 85:375–390CrossRefPubMedGoogle Scholar
  12. Cool DE, Blum JJ (1993) Protein tyrosine phosphatase activity in Leishmania donovani. Mol Cell Biochem 127–128:143–149CrossRefPubMedGoogle Scholar
  13. DeVinney R, Steele-Mortimer O, Finlay BB (2000) Phosphatases and kinases delivered to the host cell by bacterial pathogens. Trends Microbiol 8:29–33CrossRefPubMedGoogle Scholar
  14. Dissing J, Dahl O, Svensmark O (1979) Phosphonic and arsonic acids as inhibitors of human red cell acid phosphatase and their use in affinity chromatography. Biochim Biophys Acta 569:159–176PubMedGoogle Scholar
  15. Furuya H, Yoshino K, Shimizu T, Mantoku T, Takeda T, Nomura K, Suzuki N (1998) Mass spectrometric analysis of phosphoserine residues conserved in the catalytic domain of membrane-bound guanylyl cyclase from the sea urchin spermatozoa. Zoolog Sci 15:507–516PubMedGoogle Scholar
  16. Ghosh D, Chakraborty P (2002) Involvement of protein tyrosine kinases and phosphatases in uptake and intracellular replication of virulent and avirulent Leishmania donovani promastigotes in mouse macrophage cells. Biosci Rep 22:395–406CrossRefPubMedGoogle Scholar
  17. Glew RH, Czuczman MS, Diven WF, Berens RL, Pope MT, Katsoulis DE (1982) Partial purification and characterization of particulate acid phosphatase of Leishmania donovani promastigotes. Comp Biochem Physiol B 72:581–590CrossRefPubMedGoogle Scholar
  18. Green SP, Hartland EL, Robins-Browne RM, Phillips WA (1995) Role of YopH in the suppression of tyrosine phosphorylation and respiratory burst activity in murine macrophages infected with Yersinia enterocolitica. J Leukoc Biol 57:972–977PubMedGoogle Scholar
  19. Gregory DJ, Olivier M (2005) Subversion of host cell signalling by the protozoan parasite Leishmania. Parasitology 130(Suppl):S27–S35CrossRefPubMedGoogle Scholar
  20. Hamid N, Gustavsson A, Andersson K, McGee K, Persson C, Rudd CE, Fallman M (1999) YopH dephosphorylates Cas and Fyn-binding protein in macrophages. Microb Pathog 27:231–242CrossRefPubMedGoogle Scholar
  21. Hardie DG (1993) Use of protein phosphatase inhibitors in intact cells. In: Hadie DG (ed) Protein phosphorilation: phosphorylation: a practical approach. IRL, Oxford, pp 109–119Google Scholar
  22. Hernandez AG, Rascon A, Kutner S, Roman H, Campos Z (1993) Relationships between cell surface protease and acid phosphatase activities of Leishmania promastigote. Mol Biol Rep 18:189–195CrossRefPubMedGoogle Scholar
  23. Ilg T, Stierhof YD, Etges R, Adrian M, Harbecke D, Overath P (1991) Secreted acid phosphatase of Leishmania mexicana: a filamentous phosphoglycoprotein polymer. Proc Natl Acad Sci USA 88:8774–8778CrossRefPubMedGoogle Scholar
  24. Kamhawi S (2000) The biological and immunomodulatory properties of sand fly saliva and its role in the establishment of Leishmania infections. Microbes Infect 2:1765–1773CrossRefPubMedGoogle Scholar
  25. Lau KH, Farley JR, Baylink DJ (1989) Phosphotyrosyl protein phosphatases. Biochem J 257:23–36PubMedGoogle Scholar
  26. Li YP, Curley G, Lopez M, Chavez M, Glew R, Aragon A, Kumar H, Baca OG (1996) Protein-tyrosine phosphatase activity of Coxiella burnetii that inhibits human neutrophils. Acta Virol 40:263–272PubMedGoogle Scholar
  27. Lovelace JK, Dwyer DM, Gottlieb M (1986) Purification and characterization of the extracellular acid phosphatase of Leishmania donovani. Mol Biochem Parasitol 20:243–251CrossRefPubMedGoogle Scholar
  28. Manenti S, Kutner S, Rascon A, Hernandez AG (1990) Biochemical evidence of the antigenic cell surface heterogeneity of Leishmania mexicana. Parasitol Res 76:301–305CrossRefPubMedGoogle Scholar
  29. Menz B, Winter G, Ilg T, Lottspeich F, Overath P (1991) Purification and characterization of a membrane-bound acid phosphatase of Leishmania mexicana. Mol Biochem Parasitol 47:101–108CrossRefPubMedGoogle Scholar
  30. Nascimento M, Zhang WW, Ghosh A, Houston DR, Berghuis AM, Olivier M, Matlashewski G (2006) Identification and characterization of a protein-tyrosine phosphatase in Leishmania: involvement in virulence. J Biol Chem 281:36257–36268CrossRefPubMedGoogle Scholar
  31. Nuñez R, Kamau S, Grimm F (2001) Flow cytometric assessment of drug susceptibility in Leishmania infantum promastigotes. Curr Protoc Cytom Chapter 11:Unit 11–Unit 14Google Scholar
  32. Olivier M, Gregory DJ, Forget G (2005) Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev 18:293–305CrossRefPubMedGoogle Scholar
  33. Rittig MG, Bogdan C (2000) Leishmania-host-cell interaction: complexities and alternative views. Parasitol Today 16:292–297CrossRefPubMedGoogle Scholar
  34. Santarem N, Silvestre R, Tavares J, Silva M, Cabral S, Maciel J, Cordeiro-da-Silva A (2007) Immune response regulation by Leishmania secreted and nonsecreted antigens. J Biomed Biotechnol 2007:85154PubMedGoogle Scholar
  35. Schmid B, Wimmer M, Tag C, Hoffmann R, Hofer HW (1996) Protein phosphotyrosine phosphatases in Ascaris suum muscle. Mol Biochem Parasitol 77:183–192CrossRefPubMedGoogle Scholar
  36. Shakarian AM, Dwyer DM (2000) Structurally conserved soluble acid phosphatases are synthesized and released by Leishmania major promastigotes. Exp Parasitol 95:79–84CrossRefPubMedGoogle Scholar
  37. Silverman JM, Chan SK, Robinson DP, Dwyer DM, Nandan D, Foster LJ, Reiner NE (2008) Proteomic analysis of the secretome of Leishmania donovani. Genome Biol 9:R35CrossRefPubMedGoogle Scholar
  38. Singla N, Khuller GK, Vinayak VK (1992) Acid phosphatase activity of promastigotes of Leishmania donovani: a marker of virulence. FEMS Microbiol Lett 73:221–225CrossRefPubMedGoogle Scholar
  39. Virji M (1996) Microbial utilization of human signalling molecules. Microbiology 142(Pt 12):3319–3336CrossRefPubMedGoogle Scholar
  40. Wiese M, Ilg T, Lottspeich F, Overath P (1995) Ser/Thr-rich repetitive motifs as targets for phosphoglycan modifications in Leishmania mexicana secreted acid phosphatase. Embo J 14:1067–1074PubMedGoogle Scholar
  41. Wiese M, Gorcke I, Overath P (1999) Expression and species-specific glycosylation of Leishmania mexicana secreted acid phosphatase in Leishmania major. Mol Biochem Parasitol 102:325–329CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Alma R. Escalona-Montaño
    • 1
  • Daniel Pardavé-Alejandre
    • 1
  • Rocely Cervantes-Sarabia
    • 1
  • Patricia García-López
    • 2
  • Manuel Gutiérrez-Quiroz
    • 3
  • Laila Gutiérrez-Kobeh
    • 1
  • Ingeborg Becker-Fauser
    • 1
  • Maria M. Aguirre-García
    • 1
  1. 1.Departamento de Medicina Experimental, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMéxico D.F.México
  2. 2.Laboratorio de Farmacología, Subdirección de Investigación BásicaInstituto Nacional de CancerologíaMéxico D.F.México
  3. 3.Departamento de Microbiología y Parasitología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMéxico D.F.México

Personalised recommendations