Parasitology Research

, Volume 106, Issue 6, pp 1327–1337 | Cite as

Specific antibodies induce apoptosis in Trypanosoma cruzi epimastigotes

  • Ana María Fernández-Presas
  • Patricia Tato
  • Ingeborg Becker
  • Sandra Solano
  • Natalia Kopitin
  • Miriam Berzunza
  • Kaethe Willms
  • Joselin Hernández
  • José Luis Molinari
Original Paper

Abstract

The susceptibility of Trypanosoma cruzi epimastigotes to lysis by normal or immune sera in a complement-dependent reaction has been reported. Mouse immune sera depleted complement-induced damage in epimastigotes characterized by morphological changes and death. The purpose of this work was to study the mechanism of death in epimastigotes exposed to decomplemented mouse immune serum. Epimastigotes were maintained in RPMI medium. Immune sera were prepared in mice by immunization with whole crude epimastigote extracts. Viable epimastigotes were incubated with decomplemented normal or immune sera at 37°C. By electron microscopy, agglutinated parasites showed characteristic patterns of membrane fusion between two or more parasites; this fusion also produced interdigitation of the subpellicular microtubules. Apoptosis was determined by flow cytometry using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and annexin V assays. Nuclear features were examined by 4′-,6-diamidino-2′-phenylindole diHCI cytochemistry that demonstrated apoptotic nuclear condensation. Caspase activity was also measured. TUNEL results showed that parasites incubated with decomplemented immune sera took up 26% of specific fluorescence as compared to 1.3% in parasites incubated with decomplemented normal sera. The Annexin-V-Fluos staining kit revealed that epimastigotes incubated with decomplemented immune sera exposed phosphatidylserine on the external leaflet of the plasma membrane. The incubation of parasites with immune sera showed caspase 3 activity. We conclude that specific antibodies are able to induce agglutination and apoptosis in epimastigotes, although the pathway is not elucidated.

References

  1. Ameisen JC, Idziorek TH, Billaut-Mulot O, Loyens M, Tissier JP, Potentier A, Ouaissi MA (1995) Apoptosis in a unicellular eukaryote (Trypanosoma cruzi): implications for the evolutionary origin and role of programmed cell death in the control of cell proliferation, differentiation and survival. Cell Death Differ 2:283–300Google Scholar
  2. Barcinski MA, DosReis GA (1999) Apoptosis in parasites and parasite-induced apoptosis in the host immune system: a new approach for the parasitic diseases. Braz J Med Biol Res 32:395–401CrossRefPubMedGoogle Scholar
  3. Billaut-Mulot O, Fernandez-Gomez R, Loyens M, Ouaissi A (1996) Trypanosoma cruzi elongation factor 1-α: nuclear localization in parasites undergoing apoptosis. Gene 174:19–26CrossRefPubMedGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  5. Butler JE, Felbush TL, McGivern PL, Stwart N (1978) The enzyme-linked immunosorbent assay, ELISA. A measure of antibody concentration or affinity. Immunochem 15:131–136CrossRefGoogle Scholar
  6. Cohen JJ (1993) Apoptosis. Immunol Today 14:126–130CrossRefPubMedGoogle Scholar
  7. Cohen GM, Sun XM, Snowden RT, Dinsdale D, Skilleter DN (1992) Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem J 286:331–334PubMedGoogle Scholar
  8. Collins JA, Schandl CA, Young KK, Vesely J, Willingham MC (1997) Major DNA fragmentation is a late event in apoptosis. J Histochem Cytochem 45:923–934PubMedGoogle Scholar
  9. Committee and Care and Use of Laboratory Animals (1996) Guide for the care and use of laboratory animals. Institute of Laboratory Animal Resources. National Research Council, Washington, DCGoogle Scholar
  10. Duvall E, Wyllie AH (1986) Death and the cell. Immunol Today 7:115–119CrossRefGoogle Scholar
  11. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Ann Review Biochem 6:383–424CrossRefGoogle Scholar
  12. Estaquier J, Idziorek T, De Bels F, Barré-Sinoussi F, Hurtrel B, Aubertin AM, Venet A, Mehtali M, Muchmore E, Michel P, Mouton Y, Girard M, Ameisen JC (1994) Programmed cell death and AIDS: the significance of T-cell apoptosis in pathogenic and non pathogenic primate lentiviral infections. Proc Natl Acad Sci U S A 91:9431–9435CrossRefPubMedGoogle Scholar
  13. Fadok VA, Bratton DL, Konowal A, Freed PW, Wescott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE-2 and PAF. J Clinical Inves 101:890–898CrossRefGoogle Scholar
  14. Fernández-Presas AM, Tay Z, Becker F, Merchant MT, Robert G, Willms K (2001) Ultrastructural damage of Trypanosoma cruzi epimastigotes exposed to decomplemented immune sera. Parasitol Res 87:619–625PubMedGoogle Scholar
  15. Freire de Lima Celio G, Nascimento DO, Soares MB, Bozza PT, Castro-Faira-Neto HC, de Mello FG, DosReis GA, Lopes M (2000) Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature 403:199–203CrossRefGoogle Scholar
  16. Gavrieli Y, Sherman Y, Ben-Sasson SA (1988) Identification of a programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501CrossRefGoogle Scholar
  17. Gorczyca W, Gong J, Darzynkiewicz Z (1993) Detection of DNA strand breaks in individual apoptotic cells by in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer Res 53:1945–1951PubMedGoogle Scholar
  18. Henriques-Pons A, Oliveira GM, Paiva MM, Correa AF, Batista MM, Bisaggio RC, Liu CC, Cotta-De-Almeida V, Coutinho CM, Persechini PM, Araújo-Jorge TC (2003) Evidence for a perforin-mediated mechanism controlling cardiac inflammation in Trypanosoma cruzi infection. Inter J Exp Path 83:67–79CrossRefGoogle Scholar
  19. Homburg CH, de Haas M, von dem Borne AE, Verhoeven AJ, Reutelingsperger CP, Roos D (1995) Human neutrophils lose their surface Fc gamma RIII and acquire annexin V binding sites during apoptosis in vitro. Blood 85:532–540PubMedGoogle Scholar
  20. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420PubMedGoogle Scholar
  21. Kosec G, Alvarez VE, Agüero F, Sánchez D, Dolinar M, Turk B, Turk V, Cazzulo JJ (2006) Metacaspases of Trypanosoma cruzi: possible candidates for programmed cell death mediators. Mol Bioch Parasitol 145:18–28CrossRefGoogle Scholar
  22. Kototani K, Kanbara H, Fukama T, Nakabayashi T (1979) Electron microscopic observations on lysis of Trypanosoma cruzi epimastigotes by normal rabbit serum. Biken J 22:109–115PubMedGoogle Scholar
  23. Kowalczyk AGM, Horwacik I, Odrowaz Z, Kozbor D, Rokita H (2009) The GD2-specific 14G2a monoclonal antibody induces apoptosis and enhances cytotoxicity of chemotherapeutic drugs in IMR-32 human neuroblastoma cells. Cancer Lett 281:171–182CrossRefPubMedGoogle Scholar
  24. Lee N, Gannavaram S, Selvapandiyan A, Debrabant A (2007) Characterization of Metacaspases with trypsin-like activity and their putative role in programmed cell death in the protozoan parasite. Leishmania 6:1745–1757Google Scholar
  25. Ming M, Ewen ME, Pereira MEA (1995) Trypanosome invasion of mammalian cells requires activation of the TGF-beta signaling pathway. Cell 8:287–296CrossRefGoogle Scholar
  26. Mpoke S, Wolfe J (1996) DNA digestion and chromatin condensation during nuclear death in Tetrahymena. Exp Cell Res 225:357–365CrossRefPubMedGoogle Scholar
  27. Muniz J, Boriello A (1945) Estudo sobre acao litica de diferentes soros sobre as formas de cultura e sanguícolas do Schizotrypanum cruzi. Revi Bras Biol 5:563–576Google Scholar
  28. Nauta AJ, Daha MR, Tijsma O, van de Water B, Tedesco F, Roos A (2002) The membrane attack complex of complement induces caspase activation and apoptosis. Eur J Immunol 32:783–92CrossRefPubMedGoogle Scholar
  29. Nogueira N, Bianco C, Cohn Z (1975) Studies on the selective lysis and purification of Trypanosoma cruzi. J Exp Med 142:224–229CrossRefPubMedGoogle Scholar
  30. Ouaissi A (2003) Apoptosis-like death in trypanosomatids: search for putative pathways and genes involved. Kinetoplastid Biol Dis 2:1–5CrossRefGoogle Scholar
  31. Palomino SA, Aiello VD, Higuchi ML (2000) Systematic mapping of hearts from chronic patients: the association between the occurrence of histopathological lesions and Trypanosoma cruzi antigens. Ann Trop Med Parasitol 94:571–579PubMedGoogle Scholar
  32. Powell MR, Kuhn RE (1980) Measurement of cytolytic antibody in experimental Chagas disease using a terminal radiolabeling procedure. J Parasitol 66:399–406CrossRefPubMedGoogle Scholar
  33. Rubio M (1956) Actividad litica de sueros normales sobre formas de cultivo e sanguícolas de Trypanosoma cruzi. Bol Chil Parasitol 11:62–69PubMedGoogle Scholar
  34. Schaub GA (1994) Pathogenicity of trypanosomatids on insects. Parasitol Today 10:463–468CrossRefPubMedGoogle Scholar
  35. Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9:459–470CrossRefPubMedGoogle Scholar
  36. Silva JS, Twardzik DR, Reed SG (1991) Regulation of Trypanosoma cruzi infection in vitro and in vivo by transforming growth factor beta (TGF beta). J Exp Med 174:539–545CrossRefPubMedGoogle Scholar
  37. Steller H (1995) Mechanisms and genes of cellular suicide. Science 267:1445–1449CrossRefPubMedGoogle Scholar
  38. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316CrossRefPubMedGoogle Scholar
  39. Ucker DS, Obermiller PS, Eckhart W, Apgar JR, Berger NA, Meyers J (1992) Genome digestion is a dispensable consequence of physiological cell death mediated by cytotoxic T lymphocytes. Mol Cell Biol 12:3060–3069PubMedGoogle Scholar
  40. Uren AG, O’Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EB, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6:961–967PubMedGoogle Scholar
  41. Vaux DL (1993) Towards an understanding of the molecular mechanisms of physiological cell death. Pro Nat Acad Sci U S A 90:786–789CrossRefGoogle Scholar
  42. Vermes IC, Haanen H, Nakken S, Reutelingsperger C (1995) A novel assay for apoptosis: flow cytometric detection of phosphatidylserine expression on early apoptotic cells. J Immunol Methods 17:39–51CrossRefGoogle Scholar
  43. Waghabi MC, Coutinho CM, Soeiro MN, Pereira MC, Feige JJ, Keramidas M, Cosson A, Minoprio P, Van-Leuven F, Araújo-Jorge TC (2002) Increased Trypanosoma cruzi invasion and heart fibrosis associated with high transforming growth factor beta levels in mice deficient in alpha (2)-macroglobulin. Infect Imm 70:5115–5123CrossRefGoogle Scholar
  44. Welburn SC (1999) Programmed cell death in procyclic form Trypanosoma brucei rhodesiense identification of differentially expressed genes during ConA induced death. Mem Inst Osw Cruz 94:229–234Google Scholar
  45. Wyllie AH, Kerr JFR, Curie AR (1980) Cell death: the significance of apoptosis. Int Rev Cyt 68:251–306CrossRefGoogle Scholar
  46. Zakeri ZF, Quaglino D, Latham T, Lockshin RA (1993) Delayed internucleosomal DNA fragmentation in programmed cell death. FASEB J 7:470–478PubMedGoogle Scholar
  47. Zangger H, Mottram JC, Fasel N (2002) Cell death in Leishmania induced by stress and differentiation: programmed cell death or necrosis? Cell Death Differ 10:1126–1139CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ana María Fernández-Presas
    • 1
  • Patricia Tato
    • 1
  • Ingeborg Becker
    • 3
  • Sandra Solano
    • 1
  • Natalia Kopitin
    • 2
  • Miriam Berzunza
    • 3
  • Kaethe Willms
    • 1
  • Joselin Hernández
    • 3
  • José Luis Molinari
    • 2
  1. 1.Departamento de Microbiología y Parasitología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Departamento de Genética Molecular, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexicoMexico
  3. 3.Departamento de Medicina Experimental, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations