Advertisement

Parasitology Research

, Volume 106, Issue 5, pp 1205–1215 | Cite as

Anti-Giardia activity of phenolic-rich essential oils: effects of Thymbra capitata, Origanum virens, Thymus zygis subsp. sylvestris, and Lippia graveolens on trophozoites growth, viability, adherence, and ultrastructure

  • Marisa Machado
  • Augusto M. Dinis
  • Ligia Salgueiro
  • Carlos Cavaleiro
  • José B. A. Custódio
  • Maria do Céu SousaEmail author
Original Paper

Abstract

The present work evaluates the anti-Giardia activity of phenolic-rich essential oils obtained from Thymbra capitata, Origanum virens, Thymus zygis subsp. sylvestris chemotype thymol, and Lippia graveolens aromatic plants. The effects were evaluated on parasite growth, cell viability adherence, and morphology. The tested essential oils inhibited the growth of Giardia lamblia. T. capitata essential oil is the most active followed by O. virens, T. zygis subsp. sylvestris, and L. graveolens oils. The tested essential oils at IC50 (71–257) μg/ml inhibited parasite adherence (p < 0.001) since the first hour of incubation and were able to kill almost 50% of the parasites population in a time-dependent manner. The main ultrastructural alterations promoted by essential oils were deformations in typical trophozoite appearance, often roundly shape, irregular dorsal and ventral surface, presence of membrane blebs, electrodense precipitates in cytoplasm and nuclei, and internalization of flagella and ventral disc. Our data suggest that essential oils induced cell death probably by processes associated to the loss of osmoregulation caused by plasmatic membrane alterations. Experiments revealed that the essential oils did not present cytotoxic effects in mammalian cells. In conclusion, T. capitata, O. virens, T. zygis subsp. sylvestris chemotype thymol, and L. graveolens essential oils have antigiardial activity in vitro and seem to have potential for the treatment of the parasitic disease caused by the protozoan G. lamblia.

Keywords

Thymol Carvacrol Giardiasis Pyrantel Pamoate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Authors are grateful to Prof. Jorge Paiva for help in plant taxonomic.

Funding

This work was supported by “Programa Operacional Ciência e Inovacão 2010 (POCI)/FEDER” da Fundação para a Ciência e Tecnologia.

Transparency declarations

None to declare.

References

  1. Abodeely M, DuBois KN, Hehl A et al (2009) A contiguous compartment functions as endoplasmic reticulum and endosome/lysosome in Giardia lamblia. Eukaryot Cell 8:1665–1676CrossRefPubMedGoogle Scholar
  2. Abonyi A (1995) Examination of nonflagellate and flagellate round forms of Trichomonas vaginalis by transmission electron microscopy. Appl Parasitol 36:303–310PubMedGoogle Scholar
  3. Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14:447–475CrossRefPubMedGoogle Scholar
  4. Adams RP (1995) Identification of essential oils components by gas chromatography/mass spectroscopy. Allured Publishing Corporation, Carol StreamGoogle Scholar
  5. Barbosa E, Calzada F, Campos R (2007) In vivo antigiardial activity of three flavonoids isolated of some medicinal plants used in Mexican traditional medicine for the treatment of diarrhea. J Ethnopharmacol 109:552–554CrossRefPubMedGoogle Scholar
  6. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253CrossRefPubMedGoogle Scholar
  7. Busatti HG, Vieira AE, Viana JC et al (2007) Effect of metronidazole analogues on Giardia lamblia cultures. Parasitol Res 102:145–149CrossRefPubMedGoogle Scholar
  8. Calzada F, Yepez-Mulia L, Aguilar A (2006) In vitro susceptibility of Entamoeba histolytica and Giardia lamblia to plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. J Ethnopharmacol 108:367–370CrossRefPubMedGoogle Scholar
  9. Council of Europe (1997) European Pharmacopoeia. Europe Co., StrasbourgGoogle Scholar
  10. Cristani M, D'Arrigo M, Mandalari G et al (2007) Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. J Agric Food Chem 55:6300–6308CrossRefPubMedGoogle Scholar
  11. Custodio JB, Moreno AJ, Wallace KB (1998) Tamoxifen inhibits induction of the mitochondrial permeability transition by Ca2+ and inorganic phosphate. Toxicol Appl Pharmacol 152:10–17CrossRefPubMedGoogle Scholar
  12. de Almeida I, Alviano DS, Vieira DP et al (2007) Antigiardial activity of Ocimum basilicum essential oil. Parasitol Res 101:443–452CrossRefPubMedGoogle Scholar
  13. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277CrossRefPubMedGoogle Scholar
  14. Dorman HJ, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316CrossRefPubMedGoogle Scholar
  15. Eckmann L (2003) Mucosal defences against Giardia. Parasite Immunol 25:259–270CrossRefPubMedGoogle Scholar
  16. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669CrossRefPubMedGoogle Scholar
  17. Edris AE (2007) Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother Res 21:308–323CrossRefPubMedGoogle Scholar
  18. Elmendorf HG, Dawson SC, McCaffery JM (2003) The cytoskeleton of Giardia lamblia. Int J Parasitol 33:3–28CrossRefPubMedGoogle Scholar
  19. Faleiro L, Miguel G, Gomes S et al (2005) Antibacterial and antioxidant activities of essential oils isolated from Thymbra capitata L. (Cav.) and Origanum vulgare L. J Agric Food Chem 53:8162–8168CrossRefPubMedGoogle Scholar
  20. Flanagan PA (1992) Giardia—diagnosis, clinical course and epidemiology. A review. Epidemiol Infect 109:1–22PubMedGoogle Scholar
  21. Fraser D, Bilenko N, Deckelbaum RJ et al (2000) Giardia lamblia carriage in Israeli Bedouin infants: risk factors and consequences. Clin Infect Dis 30:419–424CrossRefPubMedGoogle Scholar
  22. Gadelha AP, Vidal F, Castro TM et al (2005) Susceptibility of Giardia lamblia to Hovenia dulcis extracts. Parasitol Res 97:399–407CrossRefPubMedGoogle Scholar
  23. Gardner TB, Hill DR (2001) Treatment of giardiasis. Clin Microbiol Rev 14:114–128CrossRefPubMedGoogle Scholar
  24. Gillin FD, Reiner DS (1982) Attachment of the flagellate Giardia lamblia: role of reducing agents, serum, temperature, and ionic composition. Mol Cell Biol 2:369–377PubMedGoogle Scholar
  25. Gonçalves MJ, Vicente AM, Cavaleiro C et al (2007) Composition and antifungal activity of the essential oil of Mentha cervina from Portugal. Nat Prod Res 21:867–871CrossRefPubMedGoogle Scholar
  26. Hansen WR, Tulyathan O, Dawson SC et al (2006) Giardia lamblia attachment force is insensitive to surface treatments. Eukaryot Cell 5:781–783CrossRefPubMedGoogle Scholar
  27. Harris JC, Plummer S, Turner MP et al (2000) The microaerophilic flagellate Giardia intestinalis: Allium sativum (garlic) is an effective antigiardial. Microbiology 146:3119–3127PubMedGoogle Scholar
  28. Hill DR, Pohl R, Pearson RD (1986) Giardia lamblia: a culture method for determining parasite viability. Am J Trop Med Hyg 35:1129–1133PubMedGoogle Scholar
  29. Holberton DV (1973) Fine structure of the ventral disk apparatus and the mechanism of attachment in the flagellate Giardia muris. J Cell Sci 13:11–41PubMedGoogle Scholar
  30. Holberton DV (1974) Attachment of Giardia—a hydrodynamic model based on flagellar activity. J Exp Biol 60:207–221PubMedGoogle Scholar
  31. Joulain D, König W (1998) The atlas of spectral data of sesquiterpene hydrocarbons. E. B., HamburgGoogle Scholar
  32. Keister DB (1983) Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77:487–488CrossRefPubMedGoogle Scholar
  33. Lanfredi-Rangel A, Attias M, de Carvalho TM et al (1998) The peripheral vesicles of trophozoites of the primitive protozoan Giardia lamblia may correspond to early and late endosomes and to lysosomes. Struct Biol 123:225–235CrossRefGoogle Scholar
  34. Machado M, Sousa MC, Salgueiro L et al (2010) Effects of essential oils on the growth of Giardia lamblia trophozoites. Nat Prod Commun 5:137–141PubMedGoogle Scholar
  35. Moon T, Wilkinson JM, Cavanagh HM (2006) Antiparasitic activity of two Lavandula essential oils against Giardia duodenalis, Trichomonas vaginalis and Hexamita inflata. Parasitol Res 99:722–728CrossRefPubMedGoogle Scholar
  36. Niven GW, Miles CA, Mackey BM (1999) The effects of hydrostatic pressure on ribosome conformation in Escherichia coli: and in vivo study using differential scanning calorimetry. Microbiology 145:419–425CrossRefPubMedGoogle Scholar
  37. Park JH, Schofield PJ, Edwards MR (1997) Giardia intestinalis: volume recovery in response to cell swelling. Exp Parasitol 86:19–28CrossRefPubMedGoogle Scholar
  38. Perez-Arriaga L, Mendoza-Magana ML, Cortes-Zarate R et al (2006) Cytotoxic effect of curcumin on Giardia lamblia trophozoites. Acta Trop 98:152–161CrossRefPubMedGoogle Scholar
  39. Ponce-Macotela M, Rufino-Gonzalez Y, Gonzalez-Maciel A et al (2006) Oregano (Lippia spp.) kills Giardia intestinalis trophozoites in vitro: antigiardiasic activity and ultrastructural damage. Parasitol Res 98:557–560CrossRefPubMedGoogle Scholar
  40. Santoro GF, das Gracas Cardoso M et al (2007) Effect of oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.) essential oils on Trypanosoma cruzi (Protozoa: Kinetoplastida) growth and ultrastructure. Parasitol Res 100:783–790CrossRefPubMedGoogle Scholar
  41. Sawangjaroen N, Subhadhirasakul S, Phongpaichit S et al (2005) The in vitro anti-giardial activity of extracts from plants that are used for self-medication by AIDS patients in southern Thailand. Parasitol Res 95:17–21CrossRefPubMedGoogle Scholar
  42. Silva MT, Appelberg R, Silva MN et al (1987) In vivo killing and degradation of Mycobacterium aurum within mouse peritoneal macrophages. Infect Immun 55:2006–2016PubMedGoogle Scholar
  43. Sousa MC, Poiares-Da-Silva J (1999) A new method for assessing metronidazole susceptibility of Giardia lamblia trophozoites. Antimicrob Agents Chemother 43:2939–2942PubMedGoogle Scholar
  44. Sousa MC, Goncalves CA, Bairos VA et al (2001) Adherence of Giardia lamblia trophozoites to Int-407 human intestinal cells. Clin Diagn Lab Immunol 8:258–265PubMedGoogle Scholar
  45. Thompson RC (2000) Giardiasis as a re-emerging infectious disease and its zoonotic potential. Int J Parasitol 30:1259–1267CrossRefPubMedGoogle Scholar
  46. Upcroft P, Upcroft JA (2001) Drug targets and mechanisms of resistance in the anaerobic protozoa. Clin Microbiol Rev 14:150–164CrossRefPubMedGoogle Scholar
  47. Vidal F, Vidal JC, Gadelha AP et al (2007) Giardia lamblia: the effects of extracts and fractions from Mentha x piperita Lin. (Lamiaceae) on trophozoites. Exp Parasitol 115:25–31CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Marisa Machado
    • 1
    • 2
  • Augusto M. Dinis
    • 3
  • Ligia Salgueiro
    • 1
  • Carlos Cavaleiro
    • 1
  • José B. A. Custódio
    • 4
  • Maria do Céu Sousa
    • 1
    • 5
    Email author
  1. 1.Faculdade de Farmácia/CEFUniversidade de CoimbraCoimbraPortugal
  2. 2.Departamento FarmáciaEscola Superior de Saúde do Vale do Ave/Centro de Investigação em Tecnologias da Saúde IPSN-CESPUVila Nova de FamalicãoPortugal
  3. 3.Laboratório de Microscopia Electrónica, Departamento das Ciências da VidaFaculdade de Ciências e Tecnologia da Universidade de CoimbraCoimbraPortugal
  4. 4.Centro de Neurociências da Universidade de CoimbraCoimbraPortugal
  5. 5.Faculdade de Farmácia da Universidade de CoimbraCoimbraPortugal

Personalised recommendations