Parasitology Research

, Volume 106, Issue 5, pp 1245–1248

Isolation of an antileishmanial and antitrypanosomal flavanone from the leaves of Baccharis retusa DC. (Asteraceae)

  • Simone S. Grecco
  • Juliana Q. Reimão
  • Andre G. Tempone
  • Patricia Sartorelli
  • Paulete Romoff
  • Marcelo J. P. Ferreira
  • Oriana A. Fávero
  • Joao H. G. Lago
Short Communication

Abstract

In the course of selection of new bioactive compounds from Brazilian flora, the crude MeOH extract from the leaves of Baccharis retusa DC. (Asteraceae) showed potential against Leishmania sp. and Trypanosoma cruzi. Chromatographic fractionation of the dichloromethane phase from MeOH extract yielded great amounts of the bioactive derivative, which was characterized as 5,6,7-trihydroxy-4′-methoxyflavanone. The structure of this compound was established on the basis of spectroscopic data analysis, mainly nuclear magnetic resonance and mass spectrometry.

References

  1. Agrawal PK (1989) Carbon-13 NMR of flavonoids. Elsevier Science, AmsterdamGoogle Scholar
  2. Balaña-Fouce R, Reguera RM, Cubría C, Ordóñez D (1998) The pharmacology of Leishmaniasis. Gen Pharm 30:435–443CrossRefGoogle Scholar
  3. Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling RW et al (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5:873–882CrossRefPubMedGoogle Scholar
  4. da Silva Filho AA, Resende DO, Fukui MJ, Santos FF, Pauletti PM, Cunha WR, Silva ML, Gregório LE, Bastos JK, Nanayakkara NP (2009) In vitro antileishmanial, antiplasmodial and cytotoxic activities of phenolics and triterpenoids from Baccharis dracunculifolia D.C. (Asteraceae). Fitoterapia 80:478–482CrossRefPubMedGoogle Scholar
  5. Danelutte AP, Lago JHG, Young MCM, Kato MJ (2003) Antifungal flavanones and prenylated hydroquinones from Piper crassinervium Kunth. Phytochemistry 64:555–559CrossRefPubMedGoogle Scholar
  6. Lane JE, Ribeiro-Rodrigues R, Suarez CC, Bogitsh BJ, Jones MM, Singh PK, Carter CE (1996) In vitro trypanocidal activity of tetraethylthiuram disulfide and sodium diethylamine-N-carbodithioate on Trypanosoma cruzi. Am Soc Trop Med Hyg 55:263–266Google Scholar
  7. Marín C, Boutaleb-Charki S, Díaz JG, Huertas O, Rosales MJ, Pérez-Cordon G, Guitierrez-Sánchez R, Sánchez-Moreno M (2009) Antileishmaniasis activity of flavonoids from Consolida oliveriana. J Nat Prod 72:1069–1074CrossRefPubMedGoogle Scholar
  8. Matoussi N, Ameur HB, Amor SB, Fitouri Z, Becher SB (2007) Cardiotoxicity of n-methyl-glucamine antimoniate (Glucantime)—a case report. Med Mal Infect 37:S257–S259CrossRefPubMedGoogle Scholar
  9. Mortara RA, Andreoli WK, Fernandes MC, da Silva CV, Fernandes AB, L’Abbate C, da Silva S (2008) Host cell actin remodeling in response to Trypanosoma cruzi: trypomastigote versus amastigote entry. Subcell Biochem 47:101–109CrossRefPubMedGoogle Scholar
  10. Muzitano MF, Falcão CA, Cruz EA, Bergonzi MC, Bilia AR, Vincieri FF, Rossi-Bergmann B, Costa SS (2009) Oral metabolism and efficacy of Kalanchoe pinnata flavonoids in a murine model of cutaneous leishmaniasis. Planta Med 75:307–311CrossRefPubMedGoogle Scholar
  11. Ribeiro A, Piló-Veloso D, Romanha AJ, Zani CL (1997) Trypanocidal flavonoids from Trixis vauthieri. J Nat Prod 60:836–841CrossRefPubMedGoogle Scholar
  12. Sartorelli P, Andrade SP, Melhem MS, Prado FO, Tempone AG (2007) Isolation of antileishmanial sterol from the fruits of Cassia fistula using bioguided fractionation. Phytother Res 7:644–647CrossRefGoogle Scholar
  13. Silva CF, Batista MM, Mota RA, De Souza EM, Stephens CE, Boykin DW, Soeiro MN (2007) Activity of “reversed” diamidines against Trypanosoma cruzi in vitro. Biochem Pharmacol 73:1939–1946CrossRefPubMedGoogle Scholar
  14. Singh S, Sivakumar R (2004) Challenges and new discoveries in the treatment of leishmaniasis. J Infect Chemother 10:307–315CrossRefPubMedGoogle Scholar
  15. Tada H, Shiho O, Kuroshima K, Koyama M, Tsukamoto K (1986) An improved colorimetric assay for interleukin 2. J Immunol Methods 93:157–165CrossRefPubMedGoogle Scholar
  16. Tempone AG, Perez D, Rath S, Vilarinho AL, Mortara RA, de Andrade HF Jr (2004) Targeting Leishmania (L.) chagasi amastigotes through macrophage scavenger receptors: the use of drugs entrapped in liposomes containing phosphatidylserine. J Antimicrob Chemother 54:60–68CrossRefPubMedGoogle Scholar
  17. Tempone AG, Sartorelli P, Fernandes F, Mady C (2007) Natural toxins to antitrypanosomal drugs: an overview of new drug prototypes for American trypanosomiasis. Cardiovasc Hematol Agents Med Chem 5:222–235CrossRefPubMedGoogle Scholar
  18. Tempone AG, Sartorelli P, Teixeira D, Prado FO, Calixto IA, Lorenzi H, Melhem MS (2008) Brazilian flora extracts as source of novel antileishmanial and antifungal compounds. Mem Inst Oswaldo Cruz 103:443–449CrossRefPubMedGoogle Scholar
  19. Trouiller P, Torreele E, Olliaro P, White N, Foster S, Wirth D, Pecoul B (2001) Drugs for neglected diseases: a failure of the market and a public health failure? Trop Med Int Health 6:945–951CrossRefPubMedGoogle Scholar
  20. Verdi LG, Brighente IMC, Pizzolatti MG (2005) Gênero Baccharis (Asteraceae): aspectos químicos, econômicos e biológicos. Quím Nova 28:85–94CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Simone S. Grecco
    • 1
  • Juliana Q. Reimão
    • 2
  • Andre G. Tempone
    • 2
  • Patricia Sartorelli
    • 1
  • Paulete Romoff
    • 3
  • Marcelo J. P. Ferreira
    • 3
  • Oriana A. Fávero
    • 3
  • Joao H. G. Lago
    • 1
  1. 1.Departamento de Ciências Exatas e da TerraUniversidade Federal de São Paulo—Campus DiademaDiademaBrazil
  2. 2.Laboratório de Toxinologia Aplicada, Serviço de Parasitologia, Divisão de Biologia MédicaInstituto Adolfo LutzSão PauloBrazil
  3. 3.Centro de Ciências e Humanidades e Centro de Ciências Biológicas e da SaúdeUniversidade Presbiteriana MackenzieSão PauloBrazil

Personalised recommendations