Advertisement

Parasitology Research

, Volume 106, Issue 4, pp 895–905 | Cite as

Molecular evidence of intraspecific variability in different habitat-related populations of Triatoma dimidiata (Hemiptera: Reduviidae) from Costa Rica

  • Melissa Blandón-Naranjo
  • María Ángeles Zuriaga
  • Gabriela Azofeifa
  • Rodrigo Zeledón
  • María Dolores Bargues
Original Paper

Abstract

Intraspecific genetic variation among Triatoma dimidiata (Hemiptera: Reduviidae) from seven Costa Rican populations and from different domestic, peridomestic, and sylvatic ecotopes were analyzed. The complete nucleotide sequence of the nuclear ribosomal DNA internal transcribed spacer (ITS-2) and partial sequences of the cytochrome B (Cyt b) gene and the large ribosomal subunit RNA (16S) of mitochondrial DNA (mtDNA) were analyzed and compared. All ITS-2 sequences analyzed were identical and correspond to the haplotype T.dim-H1, the most common haplotype in Central American populations. Sequences of mtDNA revealed a 10.17% of polymorphism in Cyt b and 2.39% in 16S, suggesting that the Cyt b fragment is a useful marker to describe the genetic structure of populations, even at habitat-related level. The analyses of the 18 new combined T. dimidiata haplotypes (Cytb/16S/ITS-2) showed that the two main geographical locations and populations studied are genetically structured showing different haplotype profiling. Only one combined haplotype was shared in the studied areas (Cytb.d/16S.a). Seven haplotypes exclusive for domestic/peridomestic populations, five for sylvatic, and six shared haplotypes for both habitat-related ecotopes are described. Although the relationship between the habitat and the haplotype profiling is less clear, there are different patterns of haplotype distribution in each geographic area between the two habitat-related ecotopes studied (domestic/peridomestic and sylvatic), some of them reflected in the phylogenetic relationships analyzed. The intraspecific variability detected may underlie the known plasticity of T. dimidiata, an important vector for Chagas disease transmission, suggesting that this species must be continuously monitored.

Keywords

Intraspecific Variability Combine Haplotype Costa Rican Population Haplotype Profile Central American Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was supported by projects “Chagas Disease Intervention Activities” (CDIA, Contract No. ICA4CT-2003-10049) of the European Commission and the Red de Investigación de Centros de Enfermedades Tropicales - RICET (Projects No. C03/04, No. PI030545 and No. RD06/0021/0017 of the Program of Redes Temáticas de Investigació Cooperativa), FIS, Spanish Ministry of Health, Madrid, Spain. The help of Dr. EM Dotson from CDC, Atlanta, Georgia, USA, for mtDNA sequencing is acknowledged. Technical support was provided by the Servicio Central de Secuenciación para la Investigación Experimental (SCSIE) of the Universidad de Valencia (Dr. A. Martínez).

References

  1. Bargues MD, Marcilla A, Ramsey JM, Dujardin JP, Schofield CJ, Mas-Coma S (2000) Nuclear rDNA-based molecular clock of the evolution of triatominae (Hemiptera: Reduviidae), vectors of Chagas disease. Mem Inst Oswaldo Cruz 95(4):567–573CrossRefPubMedGoogle Scholar
  2. Bargues MD, Marcilla A, Dujardin JP, Mas-Coma S (2002) Triatominae vectors of Chagas disease: a molecular perspective based on nuclear ribosomal DNA markers. Trans R Soc Trop Med Hyg 96(1):159–164CrossRefGoogle Scholar
  3. Bargues MD, Klisiowicz DR, Panzera F, Noireau F, Marcilla A, Perez R, Rojas MG, O’Connor JE, Gonzalez-Candelas F, Galvao C, Jurberg J, Carcavallo RU, Dujardin JP, Mas-Coma S (2006) Origin and phylogeography of the Chagas disease main vector Triatoma infestans based on nuclear rDNA sequences and genome size. Infect Genet Evol 6(1):46–62CrossRefPubMedGoogle Scholar
  4. Bargues MD, Klisiowicz DR, Gonzalez-Candelas F, Ramsey JM, Monroy C, Ponce C, Salazar-Schettino PM, Panzera F, Abad-Franch F, Sousa OE, Schofield CJ, Dujardin JP, Guhl F, Mas-Coma S (2008) Phylogeography and genetic variation of Triatoma dimidiata, the main Chagas disease vector in Central America, and its position within the genus Triatoma. PLoS Negl Trop Dis 2(5):e233CrossRefPubMedGoogle Scholar
  5. Cordón-Rosales C (2002) Investigación operativa sobre los triatomineos vectores de la Enfermedad de Chagas en Guatemala. In: Taller para el establecimiento de pautas técnicas en el control de Triatoma dimidiata OPS/OMS, OPS/HCP/HCT/214/02, San Salvador, El Salvador, pp 20–22Google Scholar
  6. Dorn PL, Calderón C, Melgar S, Moguel B, Solorzano E, Dumonteil E, Rodas A, de la Rua N, Garnica R, Monroy C (2009) Two distinct Triatoma dimidiata (Latreille, 1811) taxa are found in sympatry in Guatemala and Mexico. PLoS Negl Trop Dis 3:393CrossRefGoogle Scholar
  7. Dotson EM, Beard CB (2001) Sequence and organization of mitochondrial genome of the Chagas disease vector, Triatoma dimidiata. Insect Mol Biol 10:205–225CrossRefPubMedGoogle Scholar
  8. Dujardin JP, Cardozo L, Schofield CJ (1996) Genetic analysis of Triatoma infestans following insecticidal control interventions in central Bolivia. Acta Trop 61:263–266CrossRefPubMedGoogle Scholar
  9. Dujardin JP, Muñoz M, Chaves T, Ponce C, Moreno JR, Schofield CJ (1998) The origin of Rhodnius prolixus in Central America. Med Vet Entomol 12:113–115CrossRefPubMedGoogle Scholar
  10. Dumonteil E, Ruiz-Pina H, Rodríguez-Felix E, Barrera-Perez M, Ramírez-Sierra MJ, Rabinovich JE, Menu F (2004) Re-infestation of houses by Triatoma dimidiata after intra-domicile insecticide application in the Yucatán Peninsula, Mexico. Mem Inst Oswaldo Cruz 99:253–256CrossRefPubMedGoogle Scholar
  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791CrossRefGoogle Scholar
  12. Fitzpatrick S, Feliciangeli MD, Sanchez-Martin MJ, Monteiro FA, Miles MA (2008) Molecular genetics reveal that silvatic Rhodnius prolixus do colonise rural houses. PLoS Negl Trop Dis 2:210CrossRefGoogle Scholar
  13. García BA, Powell JR (1998) Phylogeny of species of Triatoma (Hemiptera: Reduviidae) based on mitochondrial DNA sequences. J Med Entomol 35:232–238PubMedGoogle Scholar
  14. García BA, Moriyama EN, Powell JR (2001) Mitochondrial DNA sequences of triatomines (Hemiptera: Reduviidae): phylogenetic relationships. J Med Entomol 38:675–683CrossRefPubMedGoogle Scholar
  15. García BA, Manfredi C, Fichera L, Segura EL (2003) Short report: variation in mitochondrial 12S and 16S ribosomal DNA sequences in natural populations of Triatoma infestans (Hemiptera: Reduviidae). Am J Trop Med Hyg 68:692–694PubMedGoogle Scholar
  16. Giordano R, Pizarro JC, Paulk S, Stevens L (2005) Genetic diversity of Triatoma infestans (Hemiptera: Reduviidae) in Chuquisaca, Bolivia based on the mitochondrial cytochrome b gene. Mem Inst Oswaldo Cruz 100:753–760CrossRefPubMedGoogle Scholar
  17. Harris KD and Beard CB (2003) Evidence of a species complex in the Chaga’s vector Triatoma dimidiata. GenBank-EMBL accession numbers AY062133, AY062135, AY062140, AY062145, AY062150, AY062152-AY062155, AY062157, AY062162, direct submissionGoogle Scholar
  18. Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66(4):411CrossRefPubMedGoogle Scholar
  19. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120CrossRefPubMedGoogle Scholar
  20. Lyman D, Monteiro FA, Escalante A, Cordón-Rosales C, Wesson D, Dujardin JP, Beard CB (1999) Mitochondrial DNA sequence variation among triatomine vectors of Chagas’ disease. Am J Trop Med Hyg 60:377–386PubMedGoogle Scholar
  21. Liao D (1999) Concerted evolution: molecular mechanism and biological implications. Am J Hum Genet 64(1):24–30CrossRefPubMedGoogle Scholar
  22. Marcilla A, Bargues MD, Ramsey JM, Magallon-Gastelum E, Salazar-Schettino PM, Abad-Franch F, Dujardin JP, Schofield CJ, Mas-Coma S (2001) The ITS-2 of the nuclear rDNA as a molecular marker for populations, species, and phylogenetic relationships in Triatominae (Hemiptera: Reduviidae), vectors of Chagas disease. Mol Phylogenet Evol 18(1):136–142CrossRefPubMedGoogle Scholar
  23. Mas-Coma S, Bargues MD (2009) Populations, hybrids and the systematic concepts of species and subspecies in Chagas disease triatomine vectors inferred from nuclear ribosomal and mitochondrial DNA. Acta Trop 110(2–3):112–136CrossRefPubMedGoogle Scholar
  24. Moncayo A, Ortiz MI (2006) An update on Chagas disease (human American trypanosomiasis). Ann Trop Med Parasitol 8:663–677CrossRefGoogle Scholar
  25. Monteiro FA, Pérez R, Panzera F, Dujardin JP, Galvao C, Rocha D, Noireau F, Schofield CJ, Beard CB (1999) Mitochondrial DNA variation of Triatoma infestans populations and its implications to the specific status of T. melanosoma. Mem Inst Oswaldo Cruz 94:229–238CrossRefPubMedGoogle Scholar
  26. Monteiro FA, Wesson DM, Dotson EM, Schofield CJ, Beard CB (2000) Phylogeny and molecular taxonomy of the Rhodniini derived from mitochondrial and nuclear DNA sequences. Am J Trop Med Hyg 62:460–465PubMedGoogle Scholar
  27. Monteiro FA, Escalante AA, Beard CD (2001) The application of molecular tools in triatomine systematics: a public health perspective. Trends Parasitol 17:344–347CrossRefPubMedGoogle Scholar
  28. Monteiro FA, Toby VB, Fitzpatrick S, Cordón-Rosales C, Feliciangeli D, Beard CB (2003) Molecular phylogeography of the Amazonian Chagas disease vectors Rhodnius prolixus and R. robustus. Mol Ecol 12:997–1006CrossRefPubMedGoogle Scholar
  29. Monteiro FA, Donnelly MJ, Beard CB, Costa J (2004) Nested clade and phylogeographic analyses of the Chagas disease vector Triatoma brasiliensis in Northeast Brazil. Mol Phylogenet Evol 32:46–56CrossRefPubMedGoogle Scholar
  30. Panzera F, Ferrandis I, Ramsey J, Ordoñez R, Salazar-Schettino PM, Cabrera M, Monroy MC, Bargues MD, Mas-Coma S, O’Connor JE, Angulo VM, Jaramillo N, Cordón-Rosales C, Gómez D, Perez R (2006) Chromosomal variation and genome size support existente of cryptic species of Triatoma dimidiata wtih different epidemiological importante as Chagas disease vectors. Trop Med Int Health 7:1092–1103CrossRefGoogle Scholar
  31. Pfeiler E, Bitler BG, Ramsey JM, Palacios-Cardiel C, Markow TA (2006) Genetic variation, population structure, and phylogenetic relationships of Triatoma rubida and T. recurva (Hemiptera: Reduviidae: Triatominae) from the Sonoran desert, insect vectors of the Chagas’ disease parasite Trypanosoma cruzi. Mol Phylogenet Evol 41:209–221CrossRefPubMedGoogle Scholar
  32. Ponce C (1999) Elimination of the vectorial transmission of Chagas’ disease in Central American countries: Honduras. Mem Inst Oswaldo Cruz 94:417–418CrossRefPubMedGoogle Scholar
  33. Sainz AC, Mauro LV, Moriyama EN, García BA (2004) Phylogeny of Triatomine vectors of Trypanosoma cruzi suggested by mitochondrial DNA sequences. Genetica 121:229–240CrossRefPubMedGoogle Scholar
  34. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  35. Schofield CJ, Jannin J, Salvatella R (2006) The future of Chagas disease control. Trends Parasitol 12:583–588CrossRefGoogle Scholar
  36. Segura EL, Torres AG, Fusco O, García BA (2009) Mitochondrial 16S DNA variation in populations of Triatoma infestans from Argentina. Med Vet Entomol 23:34–40CrossRefPubMedGoogle Scholar
  37. Staden R, Judge DP, Bonfield JK (2001) Sequence assembly and finishing methods. Met Biochem Anal 43:302–322Google Scholar
  38. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (* and Other Methods). [4.0beta]. Sinauer Associates, Sunderland, MAGoogle Scholar
  39. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596CrossRefPubMedGoogle Scholar
  40. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680CrossRefPubMedGoogle Scholar
  41. WHO (1995) Tropical disease research: Progress 1975-94: highlights 1993-94. Twelfth Programme Report of the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Disease (TDR), p 167Google Scholar
  42. WHO (2002) Control of Chagas disease. Second Report of the WHO Expert Committee. World Health Organization, GenevaGoogle Scholar
  43. Zeledón R, Ugalde JA, Paniagua LA (2001) Entomological and ecological aspects of six sylvatic species of triatomines (Hemiptera, Reduviidae) from the collection of the national biodiversity institute of Costa Rica, Central America. Mem Inst Oswaldo Cruz 96:757–764PubMedGoogle Scholar
  44. Zeledón R (2004) Some historical facts and recent issues related to the presence of Rhodnius prolixus (Stal, 1859) (Hemiptera: Reduviidae) in Central America. Entomol Vectores 11:233–246Google Scholar
  45. Zeledón R, Rojas J (2006) Environmental management for the control of Triatoma dimidiata (Latreille, 1811), (Hemiptera: Reduviidae) in Costa Rica: a pilot project. Mem Inst Oswaldo Cruz 101:379–386PubMedGoogle Scholar
  46. Zeledón R, Rojas JC, Urbina A, Cordero M, Gamboa SH, Lorosa ES, Alfaro S (2008) Ecological control of Triatoma dimidiata (Latreille, 1811): five years later a Costa Rican pilot project. Mem Inst Oswaldo Cruz 103:619–621Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Melissa Blandón-Naranjo
    • 1
  • María Ángeles Zuriaga
    • 2
  • Gabriela Azofeifa
    • 1
  • Rodrigo Zeledón
    • 1
  • María Dolores Bargues
    • 2
  1. 1.Laboratorio de Zoonosis, Escuela de Medicina VeterinariaUniversidad NacionalHerediaCosta Rica
  2. 2.Departamento de Parasitología, Facultad de FarmaciaUniversidad de ValenciaBurjassot–ValenciaSpain

Personalised recommendations