Parasitology Research

, Volume 106, Issue 5, pp 1049–1053 | Cite as

FY polymorphisms and vivax malaria in inhabitants of Amazonas State, Brazil

  • Sérgio Roberto Lopes Albuquerque
  • Francimary de Oliveira Cavalcante
  • Edalton Cesar Sanguino
  • Lucianna Tezza
  • Fernanda Chacon
  • Lilian Castilho
  • Maria Cristina dos Santos
Original Paper

Abstract

Although the importance of glycoprotein Duffy in the human red cells invasion process by Plasmodium vivax merozoites has been demonstrated, little is known about the associations of FY polymorphisms with malaria vivax parasitic density. In this study, we investigated the associations of the SNPs 125 G>A, 265 C>T, and 298 G>A on FY gene and the SNP –33T>C on GATA box with the vivax malaria parasitic density in inhabitants of Amazon State, Brazil. Verifications of P. vivax, as well as the definition of parasitism, were determined by standard screening tests in 497 patients. FY phenotyping was performed in all samples by hemagglutination using gel cards. Molecular analysis for FY/GATA polymorphisms were performed by polymerase chain reaction–restriction fragment length polymorphism. Our data showed that in this population, FY*A/FY*B-33 and FY*B/FY*B-33 genotypes may be a selective advantage, reducing the frequency of P. vivax infection in the studied area. FY*A/FY*B and FY*A/FY*A genotypes showed to be associated with the rise of the frequency of P. vivax infection, and FY*B/FY*X and FY*A/FY*X showed to be associated with the low levels of parasitism. These results suggest that natural adaptations, in malaria-endemic regions, could be leading to the arising of partial defense mechanisms against P. vivax, which is different from the previously described in African descents, as well as adaptations that could be increasing the susceptibility of human to this kind of malaria.

References

  1. Albuquerque SRL (2003) Frequency of ABO, Rh, Kell, Kidd, Duffy and MNS blood group systems, in inhabitants from an endemic area of malaria in Amazonas State. Manaus, Dissertation, São Paulo Federal UniversityGoogle Scholar
  2. Alecrim MGC (2000) Clinical study, parasitic resistency and polymorphism in malaria caused by Plasmodium vivax in Manaus. Thesis, Amazonas Federal UniversityGoogle Scholar
  3. Barnwell JW, Wartheimer SP (1989) Plasmodium vivax: merozoite antigens, the Duffy blood group, and erythrocyte invasion. Prog Clin Biol Res 313:1–11PubMedGoogle Scholar
  4. Brasil (2008) Health ministry. general office of health vigilance. Information system of epidemiologic vigilance—SIVEP. https://sis.funasa.gov.br/sivep_malaria. Accessed 22 Feb 2008
  5. Bruce MC, Day KP (2003) Cross species regulation of Plasmodium parasitemia in semi-immune children from Papua New Guinea. Trends Parasitol 19:271–277CrossRefPubMedGoogle Scholar
  6. Castilho L, Rios M, Pellegrino J, Saad ST, Costa FF, Reid ME (2004) A novel FY Allele in Brazilians. Vox Sang 87:190–195CrossRefPubMedGoogle Scholar
  7. Cavasini CE, De Mattos LC, Couto AA, Couto VS, Gollino Y, Moreti LJ, Bonini-Domingos CR, Rossit AR, Castilho L, Machado RL (2007) Duffy blood group gene polymorphisms among malaria vivax patients in four areas of the Brazilian Amazon Region. Malar J 6:167CrossRefPubMedGoogle Scholar
  8. Cole-Tobian JL, Michon P, Dabod E, Mueller I, King CL (2007) Dynamics of asymptomatic Plasmodium vivax infection and Duffy binding protein polymorphisms in relation to parasitemia levels in Papua New Guinea children. Am J Trop Med Hyg 77:955–962PubMedGoogle Scholar
  9. Dvorak JA, Miller LH, Whitehouse WC, Shiroishi T (1975) Invasion of erythrocytes by malaria merozoites. Science 187:748–750CrossRefPubMedGoogle Scholar
  10. Estalote AC, Proto Siqueira R, Silva WA, Zago MA, Palatinik M (2005) The mutation G298A Ala100Thr on the coding sequence of the Duffy antigen/chemokine receptor gene in non-caucasian Brazilians. Genet Mol Res 4:166–173PubMedGoogle Scholar
  11. Fleiss JL (1981) Statistical methods for rates and proportions. Wiley, New YorkGoogle Scholar
  12. Gautret P, Legros F, Koulmann P, Rodier MH, Jacquemin JL (2001) Imported Plasmodium vivax malaria in France: geographical origin and report of an atypical case acquired in Central or Western Africa. Acta Trop 78:177–181CrossRefPubMedGoogle Scholar
  13. Kasehagen LJ, Mueller I, Kiniboro B, Bockarie MJ, Reeder JC, Kazura JW, Kastens W, Mcnamara DT, King CH, Whalen CC, Zimmerman PA (2007) Reduced Plasmodium vivax erythrocyte in PNG Duffy-negative heterozygotes. Plos One 2(3):e336CrossRefPubMedGoogle Scholar
  14. Langhi DM, Bordin JO (2006) Duffy blood group and malaria. Hematology 11:389–398CrossRefPubMedGoogle Scholar
  15. Mallinson G, Soo KS, Schall TJ et al (1995) Mutations in the erythrocyte chemokine receptor (Duffy) gene: the molecular basis of the Fya/Fyb antigens and identification of a deletion in the Duffy gene of an apparently healthy individual with the Fy(a-b-) phenotype. Br J Haematol 90:823–829CrossRefPubMedGoogle Scholar
  16. Mcqueen PG, Mckenzie FE (2006) Competition for red blood cells can enhance Plasmodium vivax parasitemia in mixed-species malaria infections. Am J Trop Med Hyg 1:112–125Google Scholar
  17. Michon P, Wooley I, Wood EM, Kastens W, Zimmerman PA, Adams JS (2001) Duffy-null promoter heterozygozity reduces DARC expression and abrogates adhesion of the P. vivax ligand required for blood-stage infection. FEBS Lett 459:111–114CrossRefGoogle Scholar
  18. Miller LH, Mcauliffe FM, Mason SJ (1977) Erythrocyte receptor for malaria merozoites. Am J Trop Med Hyg 26:204–208PubMedGoogle Scholar
  19. Miller LH (1994) Impact of malaria on genetic polymophism and genetic diseases in Africans and African Americans. Proc Natl Acad Sci USA 91:2415–2419CrossRefPubMedGoogle Scholar
  20. OPAS (2004) Organización Pan-americana de la Saúde. Normas de protocolos genéricos para la eficácia de la cloroquina para el tratamento de la malaria causada pelo P. vivax. Organización Pan-americana da la Saude, WashingtonGoogle Scholar
  21. Parasol N, Reid M, Rios M, Castilho L, Harari I, Kosower NS A (1998) Novel mutation in the coding sequence of the FY*B allele of the Duffy chemokine receptor gene is associated with an altered erythrocyte phenotype. Blood 92:2237–2243PubMedGoogle Scholar
  22. Pasvol G (2007) Eroding the resistance of Duffy negativity to invasion by Plasmodium vivax? Trans R Soc Trop Med Hyg 101:953–954CrossRefPubMedGoogle Scholar
  23. Ryan JR, Stoute JA, Amon J, Dunton RF, Mtalib R, Koros J, Owour B, Luckhart S, Wirtz RA, Barnwell JW, Rosenberg R (2006) Evidence for transmission of Plasmodium vivax among a duffy antigen negative population in western Kenya. Am J Trop Med Hyg 75:575–581PubMedGoogle Scholar
  24. Tournamille C, Colin Y, Cartron JP, Kim CLV (1995) Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individual. Nat Genet 10:224–228CrossRefPubMedGoogle Scholar
  25. WHO World Health Organization (2008) World malaria reportGoogle Scholar
  26. Woolley IJ, Hotmire KA, Sramkoski RM, Zimmerman PA, Kazura JW (2000) Differential expression of the Duffy antigen receptor for chemokines according to RBC age and FY genotype. Transfusion 40:949–953CrossRefPubMedGoogle Scholar
  27. Yazdanbakhsh K, Rios M, Storry JR, Kosower N, Parasol N, Chauduri A, Reid ME (2000) Molecular mechanisms that lead to reduce expression of duffy antigens. Transfusion 40:310–320CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sérgio Roberto Lopes Albuquerque
    • 1
  • Francimary de Oliveira Cavalcante
    • 1
  • Edalton Cesar Sanguino
    • 2
  • Lucianna Tezza
    • 2
  • Fernanda Chacon
    • 2
  • Lilian Castilho
    • 3
  • Maria Cristina dos Santos
    • 4
  1. 1.Hemocentro do Amazonas (HEMOAM)ManausBrazil
  2. 2.Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM)ManausBrazil
  3. 3.Universidade de Campinas (UNICAMP)CampinasBrazil
  4. 4.Universidade Federal do Amazonas (UFAM)ManausBrazil

Personalised recommendations