Parasitology Research

, Volume 106, Issue 1, pp 257–261

Molecular identification of forensically important blowfly species (Diptera: Calliphoridae) from Germany

Original Paper

Abstract

Forensic entomology applies knowledge about the behaviour and ecology of insects associated to corpses to homicide investigations. It is possible to calculate a minimum post-mortem interval by determining the age of the oldest blowfly larvae feeding on a corpse. The growth rate of the larvae is highly dependent on temperature and also varies between the different blowfly species infesting a corpse. It is, thus, crucial to correctly identify the species collected from a crime scene. To increase the quality of species identification, molecular methods were applied to 53 individuals of six different species sampled in Bonn, Germany: Calliphora vicina, Calliphora vomitoria, Lucilia caesar, Lucilia sericata, Lucilia illustris, and Protophormia terraenovae. We extracted DNA and checked a 229 bp sequence within the mitochondrial cytochrome oxidase subunit I. The sequences of the local flies were aligned to published data of specimens from other countries. We also studied the practical value of the analysed DNA region for their differentiation. All species were matched correctly by a Basic Local Alignment Search Tool (BLAST) search apart from L. caesar and L. illustris. Although molecular methods are very useful—especially if it is necessary to identify small fragments of insect material or very young larvae—we propose to use it only in addition to the conventional methods.

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410PubMedGoogle Scholar
  2. Ames C, Turner B, Daniel B (2006) The use of mitochondrial cytochrome oxidase I gene (COI) to differentiate two UK blowfly species—Calliphora vicina and Calliphora vomitoria. Forensic Sci Int 164:179–182CrossRefPubMedGoogle Scholar
  3. Benecke M (1998) Random amplified polymorphic DNA (RAPD) typing of necrophageous insects (diptera, coleoptera) in criminal forensic studies: validation and use in practice. Forensic Sci Int 98(3):157–168CrossRefPubMedGoogle Scholar
  4. Benecke M (2005) Arthropods and Corpses. In Tsokos M. (ed): Forensic Pathology Reviews, vol. 2., Humana, pp. 207–240Google Scholar
  5. Benecke M (2008) A brief survey of the history of forensic entomology. Acta biol Benrodis 14:15–38Google Scholar
  6. Bowler K, Terblanche JS (2008) Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biol Rev Camb Philos Soc 83:339–355CrossRefPubMedGoogle Scholar
  7. Catts EP, Goff ML (1992) Forensic entomology in criminal investigations. Annu Rev Entomol 37:253–272CrossRefPubMedGoogle Scholar
  8. Chen WY, Hung TH, Shiao SF (2004) Molecular identification of forensically important blow fly species (Diptera: Calliphoridae) in Taiwan. J Med Entomol 41(1):47–57CrossRefPubMedGoogle Scholar
  9. Davies L, Ratcliffe GG (1994) Development rates of some pre-adult stages in blowflies with erence to low temperatures. Med Vet Entomol 8(3):245–254CrossRefPubMedGoogle Scholar
  10. Desmyter S, Gosselin M (2009) COI sequence variability between Chrysomyinae of forensic interest. Forensic Sci Int Genet 3(2):89–95CrossRefPubMedGoogle Scholar
  11. Easton AM, Smith KG (1970) The entomology of the cadaver. Med Sci Law 10:208–215PubMedGoogle Scholar
  12. Erzinclioglu YZ (1983) The application of entomology to forensic medicine. Med Sci Law 23:57–63PubMedGoogle Scholar
  13. Erzinclioglu YZ (1990) On the interpretation of maggot evidence in forensic cases. Med Sci Law 30(1):65–66PubMedGoogle Scholar
  14. Goff ML, Odom CB, Early M (1986) Estimation of Post-Mortem interval by entomological techniques: a case study from Oahu, Hawaii. Bull Soc Vector Ecol, pp 242–246Google Scholar
  15. Harvey ML, Gaudieri S, Villet MH, Dadour IR (2008) A global study of forensically significant calliphorids: implications for identification. Forensic Sci Int 177(1):66–76CrossRefPubMedGoogle Scholar
  16. Harvey ML, Mansell MW, Villet MH, Dadour IR (2003) Molecular identification of some forensically important blowflies of southern Africa and Australia. Med Vet Entomol 17(4):363–369CrossRefPubMedGoogle Scholar
  17. Lane RP (1975) An investigation into blowfly (Diptera: Calliphoridae) succession on corpses. J Nat Hist 9:581–588CrossRefGoogle Scholar
  18. Leclercq M (1983) Entomology and forensic medicine: dating of a death. Rev Med Liege 38:735–738PubMedGoogle Scholar
  19. Marchenko MI (1982) Trends in using entomological and botanical methods for establishing the time of death. Sud Med Ekspert 25:29PubMedGoogle Scholar
  20. Nelson LA, Wallmann JF, Dowton M (2007) Using COI barcodes to identify forensically and medically important blowflies. Med Vet Entomol 21:44–52CrossRefPubMedGoogle Scholar
  21. Putmann RJ (1977) Dynamics of the Blowfly, Calliphora erytrocephala, within Carrion. J Anim Ecol 46:854–866Google Scholar
  22. Richards CS, Crous KL, Villet MH (2009) Models of development for the blow fly sister species Chrysomya chloropyga and C. putoria. Med Vet Entomol 23:56–61CrossRefPubMedGoogle Scholar
  23. Rognes K (1991) Blowflies (Diptera, Calliphoridae) of Fennoscandia and Denmark. Fauna Entomogolica Scandanavia 245:1–277Google Scholar
  24. Saigusa K, Takamiya M, Aoki Y (2005) Species identification of the forensically important flies in Iwate pecture, Japan based on mitochondrial cytochrome oxidase gene subunit I (COI) sequences. Leg Med (Tokyo) 7(3):175–178Google Scholar
  25. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  26. Schumann H (1965) Die Schmeißfligengattung Calliphora. Merkblätter über angewandte Parasitenkunde und Schädlingsbekämpfung 6:1–14Google Scholar
  27. Sperling FA, Anderson GS, Hickey DA (1994) A DNA-based approach to the identification of insect species used for postmortem interval estimation. J Forensic Sci 39(2):418–427PubMedGoogle Scholar
  28. Stevens J, Wall R (1996) Species, subspecies and hybrid populations of the blowflies Lucilia cuprina and Lucilia sericata (Diptera: Calliphoridae). Proc R Soc Lond B 263:1335–1341CrossRefGoogle Scholar
  29. Stevens J, Wall R (1997) Genetic variation in populations of the blowflies Lucilia cuprina and Lucilia sericata (Diptera: Calliphoridae). Random amplified polymorphic DNA analysis and mitochondrial DNA sequences. Biochem Syst Ecol 25:81–97CrossRefGoogle Scholar
  30. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599CrossRefPubMedGoogle Scholar
  31. Tourle R, Downie DA, Villet MH (2009) Flies in the ointment: a morphological and molecular comparison of Lucilia cuprina and Lucilia sericata (Diptera: Calliphoridae) in South Africa. Med Vet Entomol 23(1):6–14CrossRefPubMedGoogle Scholar
  32. Vincent S, Vian JM, Carlotti MP (2000) Partial sequencing of the cytochrome oxydase b subunit gene I: a tool for the identification of European species of blow flies for postmortem interval estimation. J Forensic Sci 45(4):820–823PubMedGoogle Scholar
  33. Wallman JF, Adams M (1997) Molecular systematics of Australian carrion-breeding blowflies of the genus Calliphora (Diptera: Calliphoridae). Austr J Zool 45:337–356CrossRefGoogle Scholar
  34. Wallman JF, Donnellan SC (2001) The utility of mitochondrial DNA sequences for the identification of forensically important blowflies (Diptera: Calliphoridae) in southeastern Australia. Forensic Sci Int 120(1–2):60–67CrossRefPubMedGoogle Scholar
  35. Waugh J (2007) Dna barcoding in animal species: progress, potential and pitfalls. Bioessays 9(2):188–197CrossRefGoogle Scholar
  36. Wells JD, Williams D (2005) Validation of a DNA-based method for identifying Chrysomyinae (Diptera: Calliphoridae) used in a death investigation. Int J Legal Med 121:1–8CrossRefPubMedGoogle Scholar
  37. Wells JD, Sperling FA (2001) DNA-based identification of forensically important Chrysomyinae (Diptera: Calliphoridae). Forensic Sci Int 120(1–2):110–115CrossRefPubMedGoogle Scholar
  38. Wells JD, Wall R, Stevens JR (2007) Phylogenetic analysis of forensically important Lucilia flies based on cytochrome oxidase I sequence: a cautionary tale for forensic species determination. Int J Legal Med Sci Law 121:229–233CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute of Forensic MedicineUniversity of BonnBonnGermany

Personalised recommendations