Advertisement

Parasitology Research

, 105:1399 | Cite as

Pyrethroid and organophosphates resistance in Anopheles (N.) nuneztovari Gabaldón populations from malaria endemic areas in Colombia

  • Idalyd Fonseca-GonzálezEmail author
  • Rocío Cárdenas
  • Martha L. Quiñones
  • Janet McAllister
  • William G. Brogdon
Original Paper

Abstract

Field populations of Colombian malaria vector Anopheles (N.) nuneztovari were studied using World Health Organization (WHO) and Center for Disease Control and Prevention (CDC) bioassay techniques and through the use of biochemical microplate-based assays for resistance enzymes. Insecticides evaluated included the pyrethroids lambda-cyhalothrin and deltamethrin, organophosphates malathion and fenitrothion, and the organochlorine dichlorodiphenyltrichloroethane (DDT). Study sites selected were based upon malaria incidence, vector presence, and control activities in Colombia. Early stage selection for reduced susceptibility was observed in the bioassays for some locations. Data from the WHO and CDC bioassay methods were broadly consistent, with some differences noted. Evidence is presented for low-level initial selection of some resistance mechanisms such as mixed-function oxidases and modified acetylcholinesterase. Data from the site Encharcazón implies that selection for DDT-pyrethroid cross-resistance has occurred, though not likely at a level that currently threatens vector control by either class of insecticides, and further implies that knockdown resistance (kdr) may be present in those populations. Further studies using synergists and development of a kdr-specific assay for A. nuneztovari thus become priorities. The resistance levels to lambda-cyhalothrin and deltamethrin found in the Encharcazón population are of concern since these two insecticides are currently used for both indoor spraying and treated nets. In addition, the resistance to fenitrothion, the indoor spray insecticide mostly used for this species due to their exophilic behavior, found in the El Zulia population, makes urgent to find alternatives for chemical control in these areas. These data provide the initial baselines for insecticide susceptibility profiles for A. nuneztovari in Colombia and the first report of insecticide resistance in this vector.

Keywords

Malaria Malathion Malaria Vector Insecticide Resistance Deltamethrin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge the Coordinators and the staff of the Vector Borne Diseases Sections from Antioquia, Chocó, and Norte de Santander Health Secretaries; in particular to the Entomologists Silvia Díaz, José Dolores Palacios, Wilber Gómez, David Calle, and Eulides Pabón for their collaboration with biological collections and CDC bioassays. All experimental procedures comply with the criteria of the Ethical Committee of the University of Antioquia in agreement with the current laws of Colombia.

References

  1. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267Google Scholar
  2. Boyer S, David JP, Lemperière G, Ravanel P (2006) Response of Aedes aegypti (Diptera: Culicidae) larvae to 3 xenobiotics exposure: larval tolerance and detoxifying enzyme activities. Environ Toxicol Chem 25:470–476CrossRefPubMedGoogle Scholar
  3. Brogdon WG (1984a) Mosquito protein microassay. I. Protein determinations from small portions of single-mosquito homogenates. Comp Biochem Physiol B 79:457–459CrossRefGoogle Scholar
  4. Brogdon WG (1984b) Mosquito protein microassay. II. Modification for potential field use. Comp Biochem Physiol B 79:461–464CrossRefGoogle Scholar
  5. Brogdon WG (1988) Microassay of acetylcholinesterase activity in small portions of single mosquito homogenates. Comp Biochem Physiol C 90:145–150CrossRefPubMedGoogle Scholar
  6. Brogdon WG, Barber AM (1990a) Microplate assay of glutathione s-transferase activity for resistance detection in single-mosquito triturates. Comp Biochem Physiol B 96:339–342CrossRefGoogle Scholar
  7. Brogdon WG, Barber AM (1990b) Fenitrothion-deltamethrin cross-resistance conferred by esterases in Guatemalan Anopheles albimanus. Pestic Biochem Physiol 3:130–139CrossRefGoogle Scholar
  8. Brogdon WG, McAllister JC (1998) Resistance and vector control. Emerg Infect Dis 4:605–613CrossRefPubMedGoogle Scholar
  9. Brogdon WG, Beach RF, Stewart JM, Castanaza L (1988) Microplate assay analysis of the distribution of organophosphate and carbamate resistance in Guatemalan Anopheles albimanus. Bull World Health Organ 66:339–346PubMedGoogle Scholar
  10. Brogdon WG, McAllister JC, Vulule J (1997) Heme peroxidase activity measured in single mosquitoes identifies individuals expressing the elevated oxidase mechanism for insecticide resistance. J Am Mosq Control Assoc 13:233–237PubMedGoogle Scholar
  11. Brooke BD, Kloke G, Hunt RH, Koekemoer LL, Temu EA, Taylor ME, Small G, Hemingway J, Coetzee M (2001) Bioassay and biochemical analyses of insecticide resistance in southern African Anopheles funestus (Diptera: Culicidae). Bull Entomol Res 91:265–272PubMedGoogle Scholar
  12. Casimiro S, Coleman M, Hemingway J, Sharp B (2006) Insecticide resistance in Anopheles arabiensis and Anopheles gambiae from Mozambique. J Med Entomol 43:276–282CrossRefPubMedGoogle Scholar
  13. Chareonviriyaphap T, Rongnoparut P, Chantarumporn P, Bangs MJ (2003) Biochemical detection of pyrethroid resistance mechanisms in Anopheles minimus in Thailand. J Vector Ecol 28:108–116PubMedGoogle Scholar
  14. Coleman M, Sharp B, Seocharan I, Hemingmay J (2006) Developing an evidence-based decision support system for racional insecticides choice in the control of African malaria vectors. J Med Entomol 43:663–668CrossRefPubMedGoogle Scholar
  15. Dame D (1998) Maintenance of susceptibility to mosquito insecticides. Wing Beats 9:4–6Google Scholar
  16. Denholm I, Rowland MW (1992) Tactics for managing pesticide resistance in arthropods: theory and practice. Annu Rev Entomol 37:91–112CrossRefPubMedGoogle Scholar
  17. Diabaté A, Baldet T, Chandre F, Akogbeto M, Guiguemde TR, Darriet F, Brengues C, Guillet P, Hemingway J, Small G, Hougard JM (2002) The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae s.l. in Burkina Faso. Am J Trop Med Hyg 67:617–622PubMedGoogle Scholar
  18. Dzul FA, Penilla RP, Rodríguez AD (2007) Susceptibility and insecticide resistance mechanisms in Anopheles albimanus from the southern Yucatan Peninsula, Mexico. Salud Publica Mex 49:302–311PubMedGoogle Scholar
  19. Escalante AA, Cornejo OE, Rojas A, Udhayakumar V, Lal AA (2004) Assessing the effect of natural selection in malaria parasites. Trends Parasitol 20:388–395CrossRefPubMedGoogle Scholar
  20. Faran M, Linthicum K (1981) A handbook of the Amazonian species of Anopheles (Nyssorhynchus) (Diptera: Culicidae). Mosq Syst 13:1–81Google Scholar
  21. Federici BA, Park HW, Bideshi DK, Wirth MC, Johnson JJ (2003) Recombinant bacteria for mosquito control. J Exp Biol 206:3877–3885CrossRefPubMedGoogle Scholar
  22. Fonseca-González I (2008) Estatus de la resistencia a insecticidas de los vectores primarios de malaria y dengue en Antioquia, Chocó, Norte de Santander y Putumayo, Colombia, PhD Thesis, Universidad de Antioquia, Colombia, pp 183Google Scholar
  23. Georghiou GP, Breeland SG, Ariaratnam V (1973) Seasonal escalation of organophosphorus and carbamate resistance in Anopheles albimanus by agricultural sprays. Environ Entomol 2:369–374Google Scholar
  24. Hargreaves K, Koekemoer LL, Brooke BD, Hunt RH, Mthembu J, Coetzee M (2000) Anopheles funestus resistant to pyrethroid insecticides in South Africa. Med Vet Entomol 14:1–9CrossRefGoogle Scholar
  25. Hargreaves K, Hunt RH, Brooke BD, Mthembu J, Weeto MM, Awolola TS, Coetzee M (2003) Anopheles arabiensis and An. quadriannulatus resistance to DDT in South Africa. Med Vet Entomol 17:417–422CrossRefPubMedGoogle Scholar
  26. Hemingway J, Karunaratne SHPP (1998) Mosquito carboxylesterases: a review of molecular biology and biochemistry of a major insecticide resistance mechanism. Med Vet Entomol 12:1–12CrossRefPubMedGoogle Scholar
  27. Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391CrossRefPubMedGoogle Scholar
  28. Instituto Nacional de Salud, Ministerio de la Protección Social, INS (2007) Boletín Epidemiológico Semanal. Sistema Nacional de Vigilancia en Salud Pública-SIVIGILA. Semana Epidemiológica 52 Diciembre 23–29. Ministerio de la Protección Social, Bogota, ColombiaGoogle Scholar
  29. IRAC (2006) Prevention and management of insecticide resistance in vectors and pests of public health importance. The Insecticide Resistance Action Committee. http://www.irac-online.org
  30. Kostaropoulos I, Papadopoulos AI, Metaxakis A, Boukouvala E, Papadopoulou-Mourkidou E (2001) Glutathione S-transferase in the defence against pyrethroids in insects. Insect Biochem Mol Biol 31:313–319CrossRefPubMedGoogle Scholar
  31. Krzywinski J, Besansky N (2003) Molecular systematics of Anopheles: from subgenera to subpopulations. Annu Rev Entomol 48:111–139CrossRefPubMedGoogle Scholar
  32. Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshirre AL, Guillet P, Pasteur N, Pauron D (1998) Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol 7:179–184CrossRefPubMedGoogle Scholar
  33. Najera JA, Zaim M (2002) Malaria vector control: decision making criteria and procedures for judicious use of insecticides. WHO Pesticide Evaluation Scheme (WHOPES), Geneva. WHO/CDS/WHOPES/2002.5. Rev.1, p 122Google Scholar
  34. Ocampo CB, Brogdon WG, Orrego CM, Toro G, Montoya-Lerma J (2000) Insecticide susceptibility in Anopheles pseudopunctipennis from Colombia: comparison between bioassays and biochemical assays. J Am Mosq Control Assoc 16:331–338PubMedGoogle Scholar
  35. Olano VA, Brochero HL, Saénz R, Quiñones ML, Molina JA (2001) Mapas preliminares de la distribución de especies de Anopheles vectores de malaria en Colombia. Biomédica 21:402–408Google Scholar
  36. Penilla RP, Rodríguez AD, Hemingway J, Torres JL, Arredondo-Jimenez JI, Rodríguez MH (1998) Resistance management strategies in malaria vector mosquito control. Baseline data for a large-scale field trial against Anopheles albimanus in Mexico. Med Vet Entomol 12:217–233CrossRefPubMedGoogle Scholar
  37. Quiñones ML, Suarez MF, Fleming GA (1987) Estado de la susceptibilidad al DDT de los principales vectores de malaria en Colombia y su implicación epidemiológica. Biomédica 7:81–86Google Scholar
  38. Rubio-Palis Y (2000) Anopheles (Nyssorhynchus) de Venezuela. Taxonomía, bionomía, ecología e importancia médica. Publicado por la Escuela de Malariología y Saneamiento Ambiental “Dr. Arnoldo Gabaldon” y el Proyecto Control de Enfermedades Endémicas. Maracay, Venezuela, p 120Google Scholar
  39. Rubio-Palis Y, Zimmerman RH (1997) Ecoregional classification of malaria vectors in the Neotropics. J Med Entomol 34:499–510PubMedGoogle Scholar
  40. Ruiz F, Quiñones ML, Erazo HF, Calle DA, Alzate JF, Linton IM (2005) Molecular differentiation of Anopheles (Nyssorhynchus) benarrochi an An. (N.) oswaldoi from Southern Colombia. Mem Inst Oswaldo Cruz 100:155–160CrossRefPubMedGoogle Scholar
  41. Scorza JV, Tallaferro E, Rubiano H (1976) Comportamiento y susceptibilidad de Anopheles nuneztovari Gabaldon, 1940 a la infección por Plasmodium falciparum y Plasmodium vivax. Bol Dir Malariol Saneam Ambient 16:129–136Google Scholar
  42. Scott JG, Wen Z (2001) Cytochromes P450 of insects: the tip of the iceberg. Pest Manag Sci 57:958–967CrossRefPubMedGoogle Scholar
  43. Scott JG, Liu N, Wen ZM (1998) Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. Comp Biochem Physiol 121:147–155Google Scholar
  44. Soderlund DM (2008) Pyrethroids, knockdown resistance and sodium channels. Pest Manag Sci 64:610–616CrossRefPubMedGoogle Scholar
  45. Vulule JM, Beach RF, Atieli FK, McAllister JC, Brogdon WG, Roberts JM, Mwangi RW, Hawley WA (1999) Elevated oxidase and esterase levels associated with permethrin tolerance in Anopheles gambiae from Kenya villages using permethrin impregnated bednets. Med Vet Entomol 13:239–244CrossRefPubMedGoogle Scholar
  46. Weill M, Fort P, Berthomieu A, Dubois MP, Pasteur N, Raymond M (2002) A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila. Proc R Soc Lond B Biol Sci 269:2007–2016CrossRefGoogle Scholar
  47. Weill M, Lutfalla G, Mogensen K, Chandre F, Berthomieu A, Berticat C, Pasteur N, Phillips A, Fort P, Raymond M (2003) Insecticide resistance in mosquito vector. Nature 423:136–137CrossRefPubMedGoogle Scholar
  48. Weill M, Malcolm C, Chandre F, Mogensen K, Berthomieu A, Marquine M, Raymond M (2004) The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol Biol 3:1–7CrossRefGoogle Scholar
  49. World Health Organization (1981) Instructions for determining the susceptibility or resistance of adult mosquitoes to organochlorine, organophosphate and carbamate insecticides—diagnostic test. WHO/VBC/81.806. World Health Organization Document, GenevaGoogle Scholar
  50. World Health Organization (1992) Vector resistance to pesticides. Fifteenth report of the expert committee on vector biology and control. WHO Tech Rep Ser No 818, World Health Organization, Geneva, p 55Google Scholar
  51. World Health Organization (1998) Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces. WHO/CDS/CPC/MAL/98.12. World Health Organization, GenevaGoogle Scholar
  52. Zimmerman RH (1992) Ecology of malaria vectors in the Americas and future direction. Mem Inst Oswaldo Cruz 87:371–383CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Idalyd Fonseca-González
    • 1
    Email author
  • Rocío Cárdenas
    • 2
  • Martha L. Quiñones
    • 3
  • Janet McAllister
    • 4
  • William G. Brogdon
    • 5
  1. 1.Grupo Biología y Control de Enfermedades Infecciosas, Instituto de BiologíaUniversidad de AntioquiaMedellínColombia
  2. 2.Instituto Departamental de SaludSubgrupo Control de VectoresCúcutaColombia
  3. 3.Departamento de Salud Pública, Facultad de MedicinaUniversidad NacionalBogotáColombia
  4. 4.Centers for Disease Control and PreventionFort CollinsUSA
  5. 5.Centers for Disease Control and PreventionAtlantaUSA

Personalised recommendations