Advertisement

Parasitology Research

, 105:609 | Cite as

Seventy-five years of Resochin® in the fight against malaria

  • Markus Jensen
  • Heinz Mehlhorn
Review

Abstract

The four different forms of human malaria have threatened humanity since time immemorial and to this day, they exact a death toll of one to three million people annually. Synthetic anti-malarial agents have been in development since early 1900. Perhaps the most successful and widely used drug, Resochin® (chloroquine), was discovered 75 years ago; for a long time, it was the drug of choice and to this day, it is still used in many regions of the world as a reliable treatment against simpler forms of malaria. In regions where it has not been in use against malaria tropica for quite some time due to the development of resistances, it has regained some of its efficacy. This review traces the discovery and the mechanism of action of this substance, illustrates the significance of malaria today, and underlines the need for controlled and reliable therapeutic measures.

Keywords

Malaria Malaria Parasite Chloroquine Artemisinin Pyrimethamine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank BAYER business services, corporate history & archives for the historical images 10–13.

References

  1. Anstey N, Russell B, Yeo T, Price R (2009) The pathophysiology of vivax malaria. Trends Parasitol 25:220–227CrossRefPubMedGoogle Scholar
  2. Bayerhealthcare (2008) German summary of product characteristics Resochin tablets®/Resochin junior tablets®. Bayerhealthcare, Berlin, GermanyGoogle Scholar
  3. Bruce-Chwatt L (1988) Three hundred and fifty years of the Peruvian fever bark. Br Med J 296:1486–1487CrossRefGoogle Scholar
  4. Bruce-Chwatt L, De Zulueta J (1980) Rise and fall of malaria in Europe—a historico-epidemiological study. Oxford University Press, OxfordGoogle Scholar
  5. Carlton J, Adams JH, Silva JC, Bidwell SL, Corenzi H et al (2008a) Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455:757–763CrossRefGoogle Scholar
  6. Carlton JM, Escalanta AA, Neatsey D, Volkman SK (2008b) Comparative evolutionary of human malaria parasites. Trends Parasitol 24:545–550CrossRefGoogle Scholar
  7. Coatney R (1963) Pitfalls in a discovery: the chronical of chloroquine. Am J Trop Med Hyg 12:121–128PubMedGoogle Scholar
  8. Crouzette J, Vicaut E, Palombo S, Girre C, Fournier PE (1985). Experimental assessment of the protective activity of diazepam on the acute toxicity of chloroquin. J Toxicol Clin Toxicol 20:271–279CrossRefGoogle Scholar
  9. Das A, Sharma M, Gupta B, Dash AP (2008) Plasmodium falciparum and P. vivax: so similar, yet very different.Google Scholar
  10. Dünschede H (1971) Tropenmedizinische Forschung bei Bayer. Düsseldorfer Arbeiten zur Geschichte der Medizin Beiheft IIGoogle Scholar
  11. Gaham P (1966) Malaria parasites and other haemosporidia. Blackwell, OxfordGoogle Scholar
  12. Galinski M, Barnwell J (2009) Monkey malaria kills four humans. Trends Parasitol 25:200–2004CrossRefPubMedGoogle Scholar
  13. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S et al (2002) Genome sequence of human malaria parasite Plasmodium falciparum. Nature 419:498–511CrossRefPubMedGoogle Scholar
  14. Greenwood B, Fidock D, Kyle D, Kappe S, Alonso P, Collins F, Duffy P (2008) Malaria: progress, perils, and prospects for eradication. J Clin Invest 118:1266–1276CrossRefPubMedGoogle Scholar
  15. Grüntzig JW, Mehlhorn H (2005) Expeditionen ins Reich der Seuchen. Elsevier, HeidelbergGoogle Scholar
  16. Haberkorn A (1988) 50 years of Resochin—the eventful history of an antimalarial drug. Drugs Made Ger 31:57–59Google Scholar
  17. Hacker J (2003) Menschen, Seuchen und Mikroben: Infektionen und ihre Erreger. Beck, BerlinGoogle Scholar
  18. Klayman D (1985) Quinghaosu (Artemisinin): an antimalarial drug from China. Science 228:1049–1055CrossRefPubMedGoogle Scholar
  19. Knobloch J, Bialek R, Bienzle U (2003) Malaria. Grundlagen and klinische Praxis. Uni-Med, BremenGoogle Scholar
  20. Kopanaris P (1911) Die Wirkung von Quinine, Salversan and Atoxyl auf die Proteasoma- (Plasmodium praecox) infection des Kanarienvogels. Arch Schiffs- Trop-Hyg Pathol Ther Exotischer Krankh 15:586Google Scholar
  21. Kublin J, Cortese J, Njunju E, Mukadam R, Wirima J, Kazembe P, Djimbde A, Kouriba B, Taylor T, Plowe C (2001) Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. J Infect Dis 187:1870–1875CrossRefGoogle Scholar
  22. Kuhnert N (2000) Hundert years Aspirin(R)—Die Geschichte des wohl erfolgreichsten Medikamentes des letzten Jahrhunderts. Pharm Unserer Zeit 29:32–39CrossRefPubMedGoogle Scholar
  23. Laufer M, Thesing P, Eddington N, Masonga R, Dzinjalamala F, Takala S, Taylor T, Plowe C (2006) Return of chloroquine antimalarial efficacy in Malawi. N Eng J Med 355:1959–1966CrossRefGoogle Scholar
  24. Lee M (2002) Plants against malaria part 1: Chinchona or the Peruvian bark. J R Coll Physicians Edinb 32:189–196PubMedGoogle Scholar
  25. Linnaeus C (1748) Systema naturae. Hortus Botanicus, AmsterdamGoogle Scholar
  26. Mattingly P (1976) Evolution of the malarias: the problems of origins. Parassitologica 18:1–8Google Scholar
  27. Mehlhorn H (1988) Parasitology in focus. Springer, HeidelbergGoogle Scholar
  28. Mehlhorn H (2008) Encyclopedia of parasitology, 3rd edn. Springer, HeidelbergGoogle Scholar
  29. Mehlhorn H, Eichenlaub D, Löscher T, Peters W (1995) Diagnose and Therapie der Parasitosen des Menschen, 2nd edn. Urban and Fischer, MünchenGoogle Scholar
  30. Mikkelson TS, Hillier LDW, Eichler EE, Zody MC, Jaffe DB et al (2005) Initial sequences of the Chimpanzee genome and comparison with the human genome. Nature 437:69–87CrossRefGoogle Scholar
  31. Müller R (1946) Medizinische Mikrobiologie Parasiten, Bakterien. Immunität, Urban and Schwarzenberg, BerlinGoogle Scholar
  32. Noedl H, Se Y, Schaecher K, Smith B, Socheat D, Fukuda M, Consortium Aricas (2008) Evidence of artemisinin-resistant malaria in western Cambodia. N Eng J Med 359:2619–2620CrossRefGoogle Scholar
  33. Pierpoint W (2007) Samuel James (c1763–1831) of Hoddesdon and the medicinal use of willow bark. J Med Biogr 15:23–30PubMedGoogle Scholar
  34. Rabe P (1932) Über die Reduktion der China-Ketone zu China-Alkoholen and über die sterische Umlagerung von China-Alkaloiden. Stereochemische Forschungen. II. Justus Liebigs Ann Chem 492:242–266CrossRefGoogle Scholar
  35. Read A, Huijben S (2009) Evolutionary biology and the avoidance of antimicrobial resistance. Evol Appl 2:40–51CrossRefGoogle Scholar
  36. Sallares R, Bouwman A, Anderung C (2004) The spread of malaria to southern Europe in the antiquity: new approaches to old problems. Med Hist 48:311–328PubMedGoogle Scholar
  37. Siegel R, Poynter F (1962) Robert Talbor, Charles II, and Cinchona—a contemporary document. Med Hist 6:82–85PubMedGoogle Scholar
  38. Smith A, Williams R (2008) Rabe rest in peace: confirmation of the Rabe–Kindler conversion of d-quinotoxine Into quinine: experimental affirmation of the Woodward–Doering formal total synthesis of quinine. Angew Chem 120:1760–1764CrossRefGoogle Scholar
  39. Talisuna A, Bloland P, D`Alessandro U (2004) History, dynamics, and public health importance of malaria parasite resistance. Clin Microbiol Rev 17:235–254CrossRefPubMedGoogle Scholar
  40. Trape J, Pison G, Preziosi M (1998) Impact of chloroquine resistance on malaria mortality. C R Acad Sci Paris Serie III 321:689–697Google Scholar
  41. Uppsala-Universitet (2008) Linnaeus' thesis on the ague (malaria). Uppsala-Universitet, UppsalaGoogle Scholar
  42. Wellems T, Plowe C (2001) Chloroquine-resistant malaria. J Infect Dis 184:770–776CrossRefPubMedGoogle Scholar
  43. WHO (2003) Vorwort zum Weltgesundheitstag 2003. In: Weltgesundheitstag 2003. WHO, GenevaGoogle Scholar
  44. WHO (2008) World malaria report 2008. WHO, GenevaGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Bayer Vital GmbHLeverkusenGermany
  2. 2.Institut für Parasitologie derHeinrich-Heine-UniversitätDüsseldorfGermany

Personalised recommendations