Parasitology Research

, Volume 105, Issue 2, pp 373–380 | Cite as

Feeding patterns of biting midges of the Culicoides obsoletus and Culicoides pulicaris groups on selected farms in Brandenburg, Germany

  • Stefanie Bartsch
  • Burkhard Bauer
  • Angelika Wiemann
  • Peter-Henning Clausen
  • Stephan Steuber
Original Paper

Abstract

Host feeding patterns of engorged sibling species of the Culicoides obsoletus and Culicoides pulicaris groups captured during three nights on two selected farms maintaining either cattle, sheep, horses, and pigs (Seedorf, Brandenburg) or cattle, sheep, moufflons, and red and fallow deer (Paulinenaue, Brandenburg) were determined by polymerase chain reaction amplification using conserved primers and sets of species-specific primers derived from vertebrates mitochondrial cytochrome b. Out of a total of 177 blood meals analysed, 115 (65%) tested positive for a blood meal from vertebrates. 63.5% (n = 73) of the cyt b positive specimens could be further assigned down to the species level. Cattle appeared to be the most attractive hosts for Palaearctic biting midges (79.5%, n = 58) even if other large vertebrates were kept in their immediate vicinity. If pigs or horses were additionally maintained on a farm, they were likewise attacked by biting midges but at a distinctly smaller rate than cattle (pigs 13.7%, horses 2.7%). In this study, game animals appear to be less attractive than cattle since only a few engorged midges had taken a blood meal from red deer (4.1%). None of the blood meals analysed tested positive for sheep. Preliminary results reveal that biting midges of the C. pulicaris and C. obsoletus groups can feed on a range of vertebrate hosts but with a distinct preference for cattle even if other livestock are maintained in adjacent areas.

Keywords

Blood Meal Fallow Deer Engorge Female Bluetongue Virus Game Animal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Apperson CS, Harrison BA, Unnasch TR, Hassan HK, Irby WS, Savage HM, Aspen SE, Watson DW, Rueda LM, Engber BR, Nasci RS (2002) Host-feeding habits of Culex and other mosquitoes (Diptera: Culicidae) in the Borough of Queens in New York City, with characters and techniques for identification of Culex mosquitoes. J Med Entomol 39:777–785PubMedCrossRefGoogle Scholar
  2. Blackwell A, Mordue AJ, Mordue W (1994) Identification of blood meals of the Scottish biting midge, Culicoides impunctatus, by indirect enzyme-linked immunosorbent assay (ELISA). Med Vet Entomol 8:20–24CrossRefPubMedGoogle Scholar
  3. Boakye DA, Tang J, Truc P, Merriweather A, Unnasch TR (1999) Identification of bloodmeals in haematophagous Diptera by cytochrome B heteroduplex analysis. Med Vet Entomol 13:282–287CrossRefPubMedGoogle Scholar
  4. Boorman J, Mellor PS, Boreham PFL, Hewett RS (1977) A latex agglutination test for the identification of blood-meals of Culicoides (Diptera: Ceratopogonidae). Bull Entomol Res 67:305–311CrossRefGoogle Scholar
  5. Bosseno MF, García LS, Baunaure F, Gastelúm EM, Gutierrez MS, Kasten FL, Dumonteil E, Brenière SF (2006) Identification in triatomine vectors of feeding sources and Trypanosoma cruzi variants by heteroduplex assay and a multiplex miniexon polymerase chain reaction. Am J Trop Med Hyg 74:303–305PubMedGoogle Scholar
  6. Carpenter S, McArthur C, Selby R, Ward R, Nolan DV, Mordue Luntz AJ, Dallas JF, Tripet F, Mellor PS (2008) Experimental infection studies of UK Culicoides species midges with bluetongue virus serotypes 8 and 9. Vet Rec 163:589–592PubMedGoogle Scholar
  7. Chang MC, Teng HJ, Chen CF, Chen YC, Jeng CR (2008) The resting sites and blood meal sources of Anopheles minimus in Taiwan. Malar J 7:105CrossRefPubMedGoogle Scholar
  8. Coetzer JAW, Thomson GR, Tustin RC (1994) Vectors: Culicoides species. In: Coetzer JAW, Thomson GR, Tustin RC (eds) Infectious diseases of livestock with special reference to Africa, Vol. 1. Oxford University Press, Oxford, pp 68–89Google Scholar
  9. Delecollé JC (1985) Nouvelle contribution à l’étude systématique et iconographique des espèces du genre Culicoides (Diptera: Ceratopogonidae) du Nord-Est de la France. Thèse d’Université, Université Louis Pasteur de Strasbourg, UER Sciences Vie et TerreGoogle Scholar
  10. Dijkstra E, Van Der Ven IJK, Meiswinkel R, Holzel DR, Van Rijn PA, Meiswinkel R (2008) Culicoides chiopterus as a potential vector of bluetongue virus in Europe. Vet Rec 162:422PubMedGoogle Scholar
  11. Dyce AL (1968) The recognition of nulliparous and parous Culicoides (Diptera: Ceratopogonidae) without dissection. J Aust Ent Soc 8:11–15CrossRefGoogle Scholar
  12. Fajardo V, Gonzalez I, Lopez-Calleja I, Martin I, Hernandez PE, Garcia T, Martin R (2006) PCR-RFLP authentication of meats from red deer (Cervus elaphus), fallow deer (Dama dama), roe deer (Capreolus capreolus), cattle (Bos taurus), sheep (Ovis aries), and goat (Capra hircus). J Agric Food Chem 54:1144–1150CrossRefPubMedGoogle Scholar
  13. Kirstein F, Gray JS (1996) A molecular marker for the identification of the zoonotic reservoirs of Lyme borreliosis by analysis of the blood meal in its European vector Ixodes ricinus. Appl Environ Microbiol 62:4060–4065PubMedGoogle Scholar
  14. Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A 86(16):6196–6200CrossRefPubMedGoogle Scholar
  15. Lee JH, Hassan H, Hill G, Cupp EW, Higazi TB, Mitchell CJ et al (2002) Identification of mosquito avian derived blood meals by polymerase chain reaction-heteroduplex analysis. Am J Trop Med Hyg 66:599–604PubMedGoogle Scholar
  16. Leprince DJ, Higgins JA, Church GE, Issel CJ, McManus JM, Foil LD (1989) Body size of Culicoides variipennis (Diptera: Ceratopogonidae) in relation to bloodmeal size estimates and the ingestion of Onchocerca cervicalis (Nematoda: Filarioidea) microfiliariae. J Am Mosq Control Assoc 5:100–103PubMedGoogle Scholar
  17. Linden A, Mousset B, Grégoire F, Hanrez D, Vandenbussche F, Vandemeulebroucke E, Vanbinst T, Verheyden B, de Clerck K (2008) Bluetongue virus antibodies in wild red deer in southern Belgium. Vet Rec 162:459PubMedGoogle Scholar
  18. Losson B, Mignon B, Paternostre J, Madder M, De Deken R, De Deken G, Deblauwe I, Fassotte C, Cors R, Defrance T, Delécolle JC, Baldet T, Haubruge E, Frédéric F, Bortels J, Simonon G (2007) Biting midges overwintering in Belgium. Vet Rec 160:451–452PubMedGoogle Scholar
  19. Mehlhorn H, Walldorf V, Klimpel S, Jahn B, Jaeger F, Eschweiler J, Hoffmann B, Beer M (2007) First occurrence of Culicoides obsoletus–transmitted Bluetongue virus epidemic in Central Europe. Parasitol Res 101:219–228CrossRefPubMedGoogle Scholar
  20. Mehlhorn H, Walldorf V, Kümpel S, Schmahl G (2008) Outbreak of bluetongue disease (BTD) in Germany and the danger for Europe. Parasitol Res 103(Suppl 1):79–86CrossRefGoogle Scholar
  21. Meiswinkel R, Van Rijn P, Leijs P, Goffredo M (2007) Potential new Culicoides vector of bluetongue virus in northern Europe. Vet Rec 161:564–565PubMedGoogle Scholar
  22. Mellor PS, Wittman EJ (2002) Bluetongue Virus in the Mediterranean Basin 1998–2001. Vet J 164:20–37CrossRefPubMedGoogle Scholar
  23. Mukabana WR, Takken W, Knols BGJ (2002) Analysis of arthropod bloodmeals using molecular genetic markers. Trends Parasitol 18:505–509CrossRefPubMedGoogle Scholar
  24. Murray MD (1970) The identification of blood meals in biting midges, (Culicoides: Ceratopogonidae). Ann Trop Med Parasitol 64:115–122PubMedGoogle Scholar
  25. Nevill EM, Anderson D (1972) Host preferences of Culicoides midges (Diptera: Ceratopogonidae) in South Africa as determined by precipitin tests and light trap catches. Onderstepoort J Vet Res 39:47–52Google Scholar
  26. Ngo KA, Kramer LD (2003) Identification of bloodmeals using polymerase chain reaction (PCR) with order specific primers. J Vet Entomol 40:215–222Google Scholar
  27. Niedbalski W, Kesy A (2008) Seroprevalence of antibodies against bluetongue virus in animals imported to Poland from EU countries. Pol J Vet Sci 11:205–208PubMedGoogle Scholar
  28. Njiokou F, Simo G, Mbida Mbida A, Truc P, Cuny G, Herder S (2004) A study of host preference in tsetse flies using a modified heteroduplex PCR. Acta Trop 91:117–120CrossRefPubMedGoogle Scholar
  29. Pant CP (1987) Bloodmeal identification in vectors. Parasitol Today 3:324–326CrossRefGoogle Scholar
  30. Pizarro JC, Stevens L (2008) A new method for forensic DNA analysis of the blood meal in chagas disease vectors demonstrated using Triatoma infestans from Chuquisaca, Bolivia. PloS One 3:e3585CrossRefPubMedGoogle Scholar
  31. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386Google Scholar
  32. Ruiz-Fons F, Reyes-García AR, Alcaide V, Gortázar C (2008) Spatial and temporal evolution of bluetongue virus in wild ruminants, Spain. Emerg Infect Dis 14(6):951–953CrossRefPubMedGoogle Scholar
  33. Sant’Anna MR, Jones NG, Hindley JA, Mendes-Sousa AF, Dillon RJ, Calvacante RR et al (2008) Blood meal identification and parasite detection in laboratory-fed and field captured Lutzomyia longipalpis by PCR using FTA databasing paper. Acta Trop 107:230–237CrossRefPubMedGoogle Scholar
  34. Steuber S, Abdel-Rady A, Clausen P-H (2005) PCR-RFLP analysis: a promising technique for host species identification of blood meals from tsetse flies (Diptera: Glossinidae). Parasitol Res 97:247–254CrossRefPubMedGoogle Scholar
  35. Takamatsu H, Mellor PS, Mertens PP, Kirkham PA, Burroughs JN, Parkhouse RM (2003) A possible overwintering mechanism for bluetongue virus in the absence of the insect vector. J Gen Virol 84:227–35CrossRefPubMedGoogle Scholar
  36. Tempelis CH, Nelson RL (1971) Blood-feeding patterns of midges of the Culicoides variipennis complex in Kern County, California. J Med Entomol 8:532–534PubMedGoogle Scholar
  37. Tobe SS, Linacre AM (2008) A multiplex assay to identify 18 European mammal species from mixtures using the mitochondrial cytochrome b gene. Electrophoresis 29:340–347CrossRefPubMedGoogle Scholar
  38. Townzen JS, Brower AVZ, Judd DD (2008) Identification of mosquito bloodmeals using mitochondrial cytochrome oxidase subunit I and cytochrome b gene sequences. Med Vet Entomol 22:386–393CrossRefPubMedGoogle Scholar
  39. Washiro RK, Tempelis CH (1983) Mosquito host bloodmeal identification methodology and data analysis. Ann Rev Entomol 28:179–201CrossRefGoogle Scholar
  40. Wilson A, Mellor P (2008) Bluetongue in Europe: vector, epidemiology and climate change. Parasitol Res 103(Suppl 1):69–77CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Stefanie Bartsch
    • 1
  • Burkhard Bauer
    • 1
  • Angelika Wiemann
    • 1
  • Peter-Henning Clausen
    • 1
  • Stephan Steuber
    • 2
  1. 1.Institute for Parasitology and Tropical Veterinary MedicineBerlinGermany
  2. 2.Federal Office of Consumer Protection and Food SafetyBerlinGermany

Personalised recommendations