Parasitology Research

, Volume 104, Issue 5, pp 1119–1127 | Cite as

Effects of the essential oils of Lippia turbinata and Lippia polystachya (Verbenaceae) on the temporal pattern of locomotion of the mosquito Culex quinquefasciatus (Diptera: Culicidae) larvae

  • Jackelyn M. Kembro
  • Raúl H. Marin
  • Julio A. Zygadlo
  • Raquel M. GleiserEmail author
Original Paper


The essential oils (EO) of Lippia turbinata (TUR) and Lippia polystachya (POL) have shown lethal effects against mosquito larvae. The present work evaluated whether these EO at doses ranging from sublethal to lethal (20, 40 and 80 ppm) modify the temporal pattern of locomotion of Culex quinquefasciatus larvae. Larvae were individually placed in glass boxes, and their activity recorded at 0.3 s intervals during 40 min. Individuals treated with doses >40 ppm of either EO significantly decreased their ambulation speed and the percentage of total time ambulating compared to controls. TUR 80 ppm decreased their ambulation even sooner than POL 80 ppm, when compared to their respective controls. These findings are consistent with the neurotoxic effect against insects attributed to α-Thujone, a main component of both EO. A detrended fluctuation fractal analysis evaluating the complexity and organisation of the temporal pattern of locomotion showed fractal patterns in all animals. Both sublethal and lethal doses of TUR and POL increased the complexity of ambulation. Interestingly, for POL 20 ppm, an increase in complexity was observed, while no changes in general activity were detected, suggesting that fractal analysis may be more sensitive to detect behavioural changes than general activity evaluation.


GABAA Receptor Mosquito Larva Locomotor Behaviour Detrended Fluctuation Analysis Carvone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank partial funding from Fundación Mundo Sano. J.M.K. holds research fellowships from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and is a graduate student of the Doctorado en Ciencias Biológicas, FCEFyN, UNC, Argentina. RHM, JAZ and RMG are Career Members of CONICET. The experiments comply with the current laws of Argentina where they were performed.


  1. Adams RP (1969) Identification of essential oils by ion trap mass spectroscopy. Academic, New YorkGoogle Scholar
  2. Alados CL, Weber DN (1999) Lead effects on the predictability of reproductive behaviour in fathead minnows: a mathematical model. Environ Toxicol Chem 18:2392–2399CrossRefGoogle Scholar
  3. Alados CL, Huffman MA (2000) Fractal long-range correlations in behavioural sequences of wild chimpanzees: a non-invasive analytical tool for the evaluation of health. Ethology 106:105–116CrossRefGoogle Scholar
  4. Amer A, Mehlhorn H (2006) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472PubMedCrossRefGoogle Scholar
  5. Brackenbury J (2001) Locomotion through use of the mouth brushes in the larva of Culex pipiens (Diptera: Culicidae). Proc Biol Sci 268:101–106PubMedCrossRefGoogle Scholar
  6. Carvalho AF, Melo VM, Craveiro AA, Machado MI, Bantim MB, Rabelo EF (2003) Larvicidal activity of the essential oil from Lippia sidoides Cham. against Aedes aegypti Linn. Mem Inst Oswaldo Cruz 98:569–571PubMedGoogle Scholar
  7. Cavalcanti ES, Morais SM, Lima MA, Santana EW (2004) Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem Inst Oswaldo Cruz 99:541–544PubMedCrossRefGoogle Scholar
  8. Chantraine J, Laurent D, Ballivian C, Saavedra G, Ibanez R, Vilaseca L (1998) Insecticidal activity of essential oils on Aedes aegypti larvae. Phytother Res 12:350–354CrossRefGoogle Scholar
  9. Choochote W, Chaiyasit D, Kanjanapothi D, Rattanachanpichai E, Jitpakdi A, Tuetun B, Pitasawat B (2005) Chemical composition and anti-mosquito potential of rhizome extract and volatile oil derived from Curcuma aromatica against Aedes aegypti (Diptera: Culicidae). J Vector Ecol 30:302–309PubMedGoogle Scholar
  10. Dahl C, Widahl L-E, Nilsson C (1988) Functional analysis of the suspension feeding system in mosquitoes (Diptera: Culicidae). Ann Entomol Soc Am 81:105–127Google Scholar
  11. Duke J (2004) Dr. Duke’s phytochemical and ethnobotanical databases.
  12. ffrench-Constant RH, Roush RT (1991) Gene mapping and cross-resistance in cyclodiene insecticide-resistant Drosophila melanogaster (Mg.). Genet Res 57:17–21PubMedGoogle Scholar
  13. ffrench-Constant RH, Steichen JC, Rocheleau TA, Aronstein K, Roush RT (1993) A single-amino acid substitution in a gamma-aminobutyric acid subtype A receptor locus is associated with cyclodiene insecticide resistance in Drosophila populations. Proc Natl Acad Sci USA 90:1957–1961PubMedCrossRefGoogle Scholar
  14. Gerber FJ, Barnard DR, Ward RA (1994) Manual for mosquito rearing and experimental techniques. Am Mosq Control Assoc Bull 5:1–98Google Scholar
  15. Gillij YG, Gleiser RM, Zygadlo JA (2008) Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Biores Tech 99:2507–2515CrossRefGoogle Scholar
  16. Gleiser RM, Zygadlo JA (2007) Insecticidal properties of essential oils from Lippia turbinata and Lippia polystachya (Verbenaceae) against Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 101:1349–1354PubMedCrossRefGoogle Scholar
  17. Gleiser RM, Zygadlo JA (2008) Essential oils as potential bioactive compounds against mosquitoes. In: Imperato F (ed) Recent advances in phytochemistry. Research Signpost, Kerala (in press)Google Scholar
  18. Ho KKL, Moody GB, Peng CK, Mietus JE, Larson MG, Levy D, Goldberger AL (1997) Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation 96:842–848PubMedGoogle Scholar
  19. Hold KM, Sirisoma NS, Ikeda T, Narahashi T, Casida JE (2000) Alpha-thujone (the active component of absinthe): gamma-aminobutyric acid type A receptor modulation and metabolic detoxification. Proc Natl Acad Sci USA 97:3826–3831PubMedCrossRefGoogle Scholar
  20. Hold KM, Sirisoma NS, Casida JE (2001) Detoxification of alfa- and beta-Thujones (the active ingredients of absinthe): Site specificity and species differences in cytochrome P450 oxidation in vitro and in vivo. Chem Res Toxicol 14:589–595PubMedCrossRefGoogle Scholar
  21. Kabir K, Khan A, Mosaddik M (2003) Goniothalamin—a potent mosquito larvicide from Bryonopsis laciniosa L. J Appl Entomol 127:112–115CrossRefGoogle Scholar
  22. Kantelhard JW, Koscielny-Bunde E, Rego HHA, Havlin S, Bunde A (2001) Detecting long-range correlations with detrended fluctuation analysis. Physica A 295:441–454CrossRefGoogle Scholar
  23. Kembro JM, Perillo MA, Marín RH (2007) Correlaciones de largo alcance en el patrón de caminata de codornices japonesas expuestas a Diazepam o a una beta-carbolina ansiogénica. Actas Acad Nac Ciencs 13:159–170Google Scholar
  24. Kembro JM, Perillo MA, Pury PA, Satterlee DG, Marin RH (2008a) Fractal analysis of the ambulation pattern of Japanese quail. Br Poult Sci (in press).Google Scholar
  25. Kembro JM, Satterlee DG, Schmidt JB, Perillo MA, Marin RH (2008b) Open-field temporal pattern of ambulation in Japanese quail genetically selected for contrasting adrenocortical responsiveness to brief manual restraint. Poult Sci 87:2186–2195PubMedCrossRefGoogle Scholar
  26. Macedo ME, Consoli RA, Grandi TS, dos Anjos AM, de Oliveira AB, Mendes NM, Queiroz RO, Zani CL (1997) Screening of Asteraceae (Compositae) plant extracts for larvicidal activity against Aedes fluviatilis (Diptera:Culicidae). Mem Inst Oswaldo Cruz 92:565–70PubMedCrossRefGoogle Scholar
  27. María GA, Escós J, Alados CL (2004) Complexity of behavioural sequences and their relation to stress conditions in chickens: a non-invasive technique to evaluate animal welfare. Appl Anim Behav Sci 86:93–104CrossRefGoogle Scholar
  28. Merritt RW, Dadd RH, Walker ED (1992) Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annu Rev Entomol 37:349–376PubMedGoogle Scholar
  29. Millet Y, Jouglard J, Steinmetz MD, Tognetti P, Joanny P, Arditti J (1981) Toxicity of some essential plant oils. Clinical and experimental study. Clin Toxicol 18:1485–1498PubMedCrossRefGoogle Scholar
  30. Mora S, Diaz-Veliz G, Millan R, Lungenstrass H, Quiros S, Coto-Morales T, Hellion-Ibarrola MC (2005) Anxiolytic and antidepressant-like effects of the hydroalcoholic extract from Aloysia polystachya in rats. Pharmacol Biochem Behav 82:373–378PubMedCrossRefGoogle Scholar
  31. Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49:1685–1689CrossRefGoogle Scholar
  32. Peng CK, Hausdorff JM, Goldberger AL (2000) Fractal mechanisms in neural control: human heartbeat and gait dynamics in health and disease. In: Walleczek J (ed) Self-organized biological dynamics and nonlinear control. Cambridge University Press, Cambridge, pp 66–96Google Scholar
  33. Ramos Gonçalves JC, de Sousa Oliveira F, Benedito RB, de Sousa DP, de Almeida RN, Machado de Araùjo DA (2008) Antinociceptive activity of (−)-carvone: evidence of association with decreased peripheral nerve excitabilit. Biol Pharm Bul 31:1017–1020CrossRefGoogle Scholar
  34. Ratra GS, Casida JE (2001) GABA receptor subunit composition relative to insecticide potency and selectivity. Toxicol Lett 122:215–222PubMedCrossRefGoogle Scholar
  35. Ratra GS, Kamita SG, Casida JE (2001) Role of human GABA(A) receptor beta3 subunit in insecticide toxicity. Toxicol Appl Pharmacol 172:233–240PubMedCrossRefGoogle Scholar
  36. Rice KC, Wilson RS (1976) (−)-3-Isothujone, a small non-nitrogenous molecule with antinociceptive activity in mice. J Med Chem 19:1054–1057PubMedCrossRefGoogle Scholar
  37. Romoser WS, Lucas EA (1999) Buoyancy and diving behavior in mosquito pupae. J Am Mosq Control Assoc 15:194–199PubMedGoogle Scholar
  38. Rutherford KM, Haskell M, Glasbey C, Jones RB, Lawrence A (2003) Detrended fluctuation analysis of behavioural responses to mild acute stressors in domestic hens. Appl Anim Behav Sci 83:125–139CrossRefGoogle Scholar
  39. Shaaya E, Rafaela A (2007) Essential oils as biorational insecticides-potency and mode of action. In: Ishaaya I, Nauen R, Horowitz RA (eds) Insecticides design using advanced technologies. Springer, Berlin, pp 249–261CrossRefGoogle Scholar
  40. Shirley EA (1987) Application of ranking methods to multiple comparison procedures and factorial experiments. Appl Stat 36:205–213CrossRefGoogle Scholar
  41. Silva O, Romao P, Blazius R, Prohiro J (2004) The use of andiroba Carapa guianensis as larvicide against Aedes albopictus. J Am Mosq Contr 20:456–457Google Scholar
  42. Silva W, Doria G, Maia R, Nunes R, Carvalho G, Blank A, Alves P, Marcal R, Cavalcanti S (2008) Effects of essential oils on Aedes aegypti larvae: alternatives to environmentally safe insecticides. Biores Technol 99:3251–3255CrossRefGoogle Scholar
  43. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214–217PubMedCrossRefGoogle Scholar
  44. SPSS (2001) SigmaPlot 2001 users guide. Version 7.0. In. Jaendel Scientific. SPSS Science Inc, Chicago, ILGoogle Scholar
  45. Statistix (2000) Statistix 7. In, 7 edn. Analytical SoftwareGoogle Scholar
  46. Strickman D (1989) Biosystematics of larval movement of Central American mosquitoes and its use for field identification. J Am Mosq Control Assoc 5:208–218PubMedGoogle Scholar
  47. Tuno N, Miki K, Minakawa N, Githeko A, Yan G, Takagi M (2004) Diving ability of Anopheles gambiae (Diptera: Culicidae) larvae. J Med Entomol 41:810–812PubMedCrossRefGoogle Scholar
  48. Tuno N, Githeko A, Yan G, Takagi M (2007) Interspecific variation in diving activity among Anopheles gambiae Giles, An. arabiensis Patton, and An. funestus Giles (Diptera: Culicidae) larvae. J Vector Ecol 32:112–117PubMedCrossRefGoogle Scholar
  49. Wilson WO, Abbott UK, Abplanalp H (1961) Evaluation of Coturnix (Japanese quail) as pilot animal for poultry. Poult Sci 40:651–657Google Scholar
  50. Workman PD, Walton WE (2003) Larval behavior of four Culex (Diptera: Culicidae) associated with treatment wetlands in the southwestern United States. J Vector Ecol 28:213–228PubMedGoogle Scholar
  51. Zaim M, Jambulingam P (2004) Global insecticide use for vector-borne disease control. In: World Health Organization Communicable Disease Control PaE (ed). WHO Pesticide Evaluation Scheme (WHOPES)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jackelyn M. Kembro
    • 1
  • Raúl H. Marin
    • 1
  • Julio A. Zygadlo
    • 2
  • Raquel M. Gleiser
    • 3
    • 4
    Email author
  1. 1.Cátedra de Química Biológica and Instituto de Ciencia y Tecnología de los AlimentosUniversidad Nacional de CórdobaCordobaArgentina
  2. 2.IMBIV-CONICETUniversidad Nacional de CórdobaCordobaArgentina
  3. 3.Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales, Facultad de Ciencias AgropecuariasUniversidad Nacional de CórdobaCordobaArgentina
  4. 4.CREANFacultad de Ciencias AgropecuariasCordobaArgentina

Personalised recommendations