Parasitology Research

, Volume 104, Issue 2, pp 411–418 | Cite as

Durations of immature stage development period of Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) under laboratory conditions: implications for forensic entomology

  • Renata da Silva Mello
  • Valéria M. Aguiar-Coelho
Original Paper


Some microhymenopterans are parasitoids of flies of forensic importance. Their parasitic habit can alter the duration of post-embryonic development of these flies, altering the postmortem interval. In order to analyze possible alterations occurring during the immature development period of Nasonia vitripennis, this study tested different quantitative associations between female parasitoids and pupae of Chrysomya megacephala, which were defined by: (a) one pupa was exposed to different numbers of female parasitoids (1:1, 1:3, 1:5, 1:7, 1:9, 1:11) and (b) different numbers of pupae were exposed to one female parasitoid (1:1, 2:1, 3:1, 4:1, 5:1). Analysis of variance (5% significance level) and Tukey’s honestly significant difference tests were used for statistical analysis. There was a tendency of prolongation of the duration of parasitoid development, both by increasing the number of female parasitoids and by increasing the number of hosts in the associations. By increasing the number of female parasitoids per host, there is a possibility of increasing the occurrence of superparasitism, leading to competition for food source, then prolonging the duration of the immature development period. Increasing the number of hosts in the associations, females may distribute their postures among the available pupae and can cause reduction of the number of eggs per host. Since these insects are gregarious, the reduction of the number of eggs may delay the offspring development.


Development Period Postmortem Interval Accelerate Development Criminal Trial Female Parasitoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge CAPES for the financial support; Animal Biology Program of Post-Graduation from Universidade Federal Rural do Rio de Janeiro (UFRRJ) and Universidade Federal do Estado do Rio de Janeiro (UNIRIO) for the technical support of this research; and Dr. Maria Angélica Penteado (UFSCAR) for confirmation and identification of the parasitoid. We are also grateful to biologist Paloma Martins Mendonça (FIOCRUZ/ IOC) and Leandro Talione Sabagh (UFRJ) for valuable suggestions in the manuscript and Dr Marina Vianna Braga (FIOCRUZ/ IOC) for the review of English.


  1. Aguiar-Coelho VM, Milward-de-Azevedo EMV (1996) Associação entre larvas de Chrysomya megacephala (Fabricius), Chrysomya albiceps (Wiedemann) e Cochliomyia macellaria (Fabricius) (Calliphoridae, Diptera) sob condições de laboratório. Rev Bras Zool 12:991–1000Google Scholar
  2. Amendt J, Campobasso CP, Gaudry E, Reiter C, Leblanc HN, Hall MJR (2007) Best practice in forensic entomology—standards and guidelines. Int J Legal Med 121(2):90–104CrossRefPubMedGoogle Scholar
  3. Andrade HTA, Varela-Freire AA, Batista MJA, Medeiros JF (2005) Calliphoridae (Diptera) coletados em cadáveres humanos no Rio Grande do Norte. Neotrop Entomol 34:855–856CrossRefGoogle Scholar
  4. Barbosa LS (2006) Relações quantitativas e temporárias na exposição do hospedeiro Cochliomyia macellaria (Fabricius, 1775) (Diptera: Calliphoridae) ao parasitóide Nasonia vitripennis (Walker, 1836) (Hymenoptera: Pteromalidae), em laboratório. Dissertação (Mestrado em Zoologia)—Museu Nacional. Rio de Janeiro, RJ: Universidade Federal do Rio de Janeiro, p.1–62Google Scholar
  5. Barbosa LS, Couri MS, Aguiar-Coelho VM (2008) Desenvolvimento de Nasonia vitripennis (Walker, 1836) (Hymenoptera: Pteromalidae) em pupas de Cochliomyia macellaria (Fabricius, 1775) (Diptera: Calliphoridae), utilizando diferentes densidades do parasitóide. Biota Neotropica 8:1–6CrossRefGoogle Scholar
  6. Benecke M (2001) A brief history of forensic. Forensic Sci Int 120:2–14CrossRefPubMedGoogle Scholar
  7. Brodeur J, Boivin G (2004) Functional ecology of immature parasitoids. Annu Rev Entomol 49:27–49CrossRefPubMedGoogle Scholar
  8. Cardoso D, Milward-de-Azevedo EMV (1995) Influência de densidade de Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) sobre a capacidade reprodutiva de fêmeas nulíparas de Nasonia vitripennis (Walker) (Hymenoptera, Pteromalidae). Revta Bras Ent 39(4):779–786Google Scholar
  9. Cardoso D, Milward-de-Azevedo EMV (1996) Aspectos da biologia de Nasonia vitripennis (Walker), (Hymenoptera: Pteromalidae) em pupas de Chrysomya megacephala (Fabricius) e C. albiceps (Wiedemann) (Diptera: Calliphoridae), sob condições de laboratório. Revta Bras Ent 40:143–146Google Scholar
  10. Carvalho AR, d’Almeida JM, Mello RP (2004) Mortalidade de Larvas e Pupas de Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) e seu Parasitismo por Microhimenópteros na Cidade do Rio de Janeiro, RJ. Neotrop Entomol 33:505–509Google Scholar
  11. Catts EP, Goff ML (1992) Forensic entomology in criminal investigations. Annu Rev Entomol 37:253–272CrossRefPubMedGoogle Scholar
  12. Chabora C, Pimentel D (1966) Effects of host Musca domestica (Linnaeus) age on the Pteromalid parasite Nasonia vitripennis (Walker). Canad Ent 98:1226–1231Google Scholar
  13. Goff ML (2001) A fly for the prosecution: how insects evidence helps solve crimes. Harvard University Press, Cambridge, pp 21–30Google Scholar
  14. Greenberg B (1971) Ecology, classification and biotic associations, vol I. In: Flies and Disease. Princeton University Press, New Jersey (865 p)Google Scholar
  15. Greenberg B (1973) Biology and disease transmission, vol II. In: Flies and Disease. Princeton University Press, New Jersey (740 p)Google Scholar
  16. Hall MJR, Wall R (1995) Myiasis of humans and domestic animals. Adv Parasit 35:257–334CrossRefGoogle Scholar
  17. Harvey JA, Gols GJZ (1998) The influence of host quality on progeny and sex allocation in the pupal ectoparasitoid, Muscidifurax raptorellus (Hymenoptera: Pteromalidae). Bull Ent Res 88:299–304CrossRefGoogle Scholar
  18. Legner EF, Gerlin D (1967) Host–feeding and oviposition on Musca domestica by Spalangia cameroni, Nasonia vitripennis, and Muscidifurax raptor (Hymenoptera: Pteromalidae) influences their longevity and fecundity. Ann Entomol Soc Am 60:678–690PubMedGoogle Scholar
  19. Magalhães MN, Lima ACP (2001) Noções de Probabilidade e Estatística. 3. ed. IME-USP, São Paulo, SP, p 392Google Scholar
  20. Mello RS (2007) Efeito da densidade de Nasonia vitripennis (Walker, 1836) (Hymenoptera: Pteromalidae) e do hospedeiro Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae) sobre os aspectos biológicos do microhimenóptero. Dissertação (Mestrado em Biologia Animal)—Universidade Federal Rural do Rio de Janeiro, RJ, p.1-57Google Scholar
  21. Mello RS, Queiroz MMC, Aguiar-Coelho VM (2007) Population fluctuations of calliphorid species (Diptera, Calliphoridae) in the Biological Reserve of Tingua, state of Rio de Janeiro, Brazil. Iheringia, Série Zoologia 97:472–480CrossRefGoogle Scholar
  22. Moreira OI, Martins C, Milward-de-Azevedo EMV (1996) Avaliação preliminar do desempenho reprodutivo de Nasonia vitripennis (Walker) (Hymenoptera, Pteromalidae) em função do número de gerações. Arq Biol Tecnol 39:491–495Google Scholar
  23. Oliveira-Costa J (2007) Entomologia Forense—Quando insetos são vestígios. 2. ed. Millennium, Rio de Janeiro, RJ, p 448Google Scholar
  24. Queiroz MMC, Milward-de-Azevedo EMV (1991) Técnicas de criação e alguns aspectos da biologia de Chrysomya albiceps (Wiedemann) (Diptera, Calliphoridae), sob condições de laboratório. Revta Bras Zool 8:75–78Google Scholar
  25. Rueda LM, Axtell RC (1985) Guide to common species of pupal parasites (Hymenoptera: Pteromalidae) of the house fly and other muscoid flies associated with poultry and livestock manure. Tech Bull N C Agric Res Serv 278, 88 pGoogle Scholar
  26. Schmidt CD (1986) Nasonia vitripennis (Walker) a parasitoid contaminant in fly-rearing facilities. Southwest Entomol 11:113–118Google Scholar
  27. Slanky JRF, Scriber M (1985) Food consumption and utilization. In Compreensive insect Physiology, Biochemistry and Pharmacology. Pergamon, Oxford, p 162Google Scholar
  28. Smith KGV (1986) A Manual of forensic entomology. Cornell University Press, Ithaca, NY, p 205Google Scholar
  29. Turchetto M, Vanin S (2002) An approach to fly parasitoids interference on entomoforensic evaluations. Parasitologia 44(Suppl. 1):189Google Scholar
  30. Turchetto M, Vanin S (2004a) Forensic entomology and climatic change. Forensic Sci Int 146S:S207–S209CrossRefGoogle Scholar
  31. Turchetto M, Vanin S (2004b) Forensic valuations on a crime case with monospecific necrophagous fly population infected by two parasitoid species. Anil Aggrawal’s Internet Journal of Forensic Medicine and Toxicology 5:12–18Google Scholar
  32. Whiting AR (1967) The biology of the parasitic wasp Mormoniella vitripennis (Nasonia vitripennis) (Walker). Q Rev Biol 42:333–406CrossRefGoogle Scholar
  33. Wylie HG (1964) Effect of host age on rate of development of Nasonia vitripennis (Walk.) (Hymenoptera, Pteromalidae). Canad Entomol 96:1023–1027Google Scholar
  34. Wylie HG (1965) Effects of superparasitism on Nasonia vitripennis (Walk.) (Hymenoptera: Pteromalidae). Canad Entomol 97:326–331CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Renata da Silva Mello
    • 1
    • 2
  • Valéria M. Aguiar-Coelho
    • 3
  1. 1.Programa de Pós-Graduação em Biologia Animal, Instituto de BiologiaUniversidade Federal Rural do Rio de Janeiro (UFRRJ)SeropédicaBrazil
  2. 2.Laboratório de Eco-Epidemiologia de Doença de ChagasPavilhão Lauro Travassos, IOC/FIOCRUZRio de JaneiroBrazil
  3. 3.Laboratório de Estudo de Dipteros, Departamento de Microbiologia e Parasitologia, Instituto BiomédicoUniversidade Federal do Estado do Rio de Janeiro (UNIRIO)Rio de JaneiroBrazil

Personalised recommendations