Parasitology Research

, 104:347 | Cite as

Differential influence of gp63-like molecules in three distinct Leptomonas species on the adhesion to insect cells

  • F. M. Pereira
  • P. S. Bernardo
  • P. F. F. Dias Junior
  • B. A. Silva
  • M. T. V. Romanos
  • C. M. d’Avila-Levy
  • M. H. Branquinha
  • A. L. S. SantosEmail author
Original Paper


Parasites belonging to the Leptomonas genus have been used as model organisms for studying biochemical, cellular, and genetic processes unique to members of the Trypanosomatidae family. In the present study, the cell-associated and extracellular peptidases of three Leptomonas species, Leptomonas collosoma, Leptomonas samueli, and Leptomonas wallacei, were assayed and characterized by gelatin–sodium dodecyl sulfate polyacrylamide gel electrophoresis. All parasites released metallopeptidases, whereas no cell-associated proteolytic activity could be detected in the cellular extracts from L. collosoma. Western blotting probed with a polyclonal antibody raised against gp63 from Leishmania amazonensis revealed two major reactive polypeptides of apparent molecular masses of 63 and 52 kDa, with different intensities in cellular extracts and released proteins from the studied trypanosomatids. Flow cytometry and fluorescence microscopy analyses showed that the gp63-like molecules have a surface location. This is the first report on the presence of gp63-like molecules in L. collosoma, L. samueli, and L. wallacei. The pretreatment of L. samueli and L. wallacei with anti-gp63 antibody significantly diminished their association index to Aedes albopictus cell line (C6/36), suggesting a potential involvement of the gp63-like molecules in the interaction process of these insect trypanosomatids with the vector.


Insect Cell Visceral Leishmaniasis Spend Culture Medium Insect Cell Line Chikungunya Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the Brazilian agencies: MCT/CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CEPG/UFRJ (Conselho de Ensino para Graduados e Pesquisas), FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro), FUJB (Fundação Universitária José Bonifácio), and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).


  1. Bouvier J, Schneider P, Etges R, Bordier C (1990) Peptide substrate specificity of the membrane-bound metalloprotease of Leishmania. Biochemistry 29:10113–10119CrossRefPubMedGoogle Scholar
  2. Breganó JW, Picão RC, Graça VK, Menolli RA, Jankevicius SI, Filho PP, Jankevicius JV (2003) Phytomonas serpens, a tomato parasite, shares antigens with Trypanosoma cruzi that are recognized by human sera and induce protective immunity in mice. FEMS Immunol Med Microbiol 39:257–264CrossRefPubMedGoogle Scholar
  3. Camargo EP (1999) Phytomonas and other trypanosomatid parasites of plants and fruit. Adv Parasitol 42:29–112CrossRefPubMedGoogle Scholar
  4. Camargo EP, Sbravate C, Teixeira MM, Uliana SR, Soares MB, Affonso HT, Floeter-Winter L (1992) Ribosomal DNA restriction analysis and synthetic oligonucleotide probing in the identification of genera of lower trypanosomatids. J Parasitol 78:40–48CrossRefPubMedGoogle Scholar
  5. Chicharro C, Alvar J (2003) Lower trypanosomatids in HIV/AIDS patients. Ann Trop Med Parasitol 97:75–80CrossRefPubMedGoogle Scholar
  6. Davies CR, Cooper AM, Peacock C, Lane RP, Blackwell JM (1990) Expression of LPG and GP63 by different developmental stages of Leishmania major in the sand fly Phlebotomus papatasi. Parasitology 101:337–343PubMedCrossRefGoogle Scholar
  7. d’Avila-Levy CM, Dias FA, Nogueira de Melo AC, Martins JL, Lopes AHCS, Santos ALS, Vermelho AB, Branquinha MH (2006a) Insights on the role of gp63-like proteins in insect trypanosomatids. FEMS Microbiol Lett 254:149–156CrossRefGoogle Scholar
  8. d’Avila-Levy CM, Santos LO, Marinho FA, Dias FA, Lopes AHCS, Santos ALS, Branquinha MH (2006b) Gp63-like molecules in Phytomonas serpens: possible role on the insect interaction. Curr Microbiol 36:415–422Google Scholar
  9. d’Avila-Levy CM, Santos LO, Marinho FA, Matteoli FP, Lopes ACHS, Motta MCM, Santos ALS, Branquinha MH (2008) Crithidia deanei: influence of parasite gp63 homologue on the interaction of endosymbiont-harboring and aposymbiotic strains with Aedes aegypti midgut. Exp Parasitol 118:345–353CrossRefPubMedGoogle Scholar
  10. Elias CGR, Pereira FM, Silva BA, Alviano CS, Soares RMA, Santos ALS (2006) Leishmanolysin (gp63 metallopeptidase)-like activity extracellularly released by Herpetomonas samuelpessoai. Parasitology 132:37–47CrossRefPubMedGoogle Scholar
  11. Fampa P, Corrêa-da-Silva MS, Lima DC, Oliveira SMP, Motta MCM, Saraiva BEM (2003) Interaction of insect trypanosomatids with mosquitoes, sand fly and the respective insect cell lines. Int J Parasitol 33:1019–1026CrossRefPubMedGoogle Scholar
  12. Hajmová M, Chang KP, Kolli B, Volf P (2004) Down-regulation of gp63 in Leishmania amazonensis reduces its early development in Lutzomyia longipalpis. Microb Infect 6:646–649CrossRefGoogle Scholar
  13. Igarashi A (1978) Isolation of a Singh’s Aedes albopictus cell clone sensitive to Dengue and Chikungunya viruses. J Gen Virol 40:531–544CrossRefPubMedGoogle Scholar
  14. Joshi PB, Kelly BL, Kamhawi S, Sacks DL, McMaster WR (2002) Targeted gene deletion in Leishmania major identifies leishmanolysin (GP63) as a virulence factor. Mol Biochem Parasitol 120:33–40CrossRefPubMedGoogle Scholar
  15. Lopes JD, Caulada Z, Barbieri CL, Camargo EP (1981) Cross-reactivity between Trypanosoma cruzi and insect trypanosomatids as a basis for the diagnosis of Chagas’ disease. Am J Trop Med Hyg 30:1183–1188PubMedGoogle Scholar
  16. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  17. MacDonald MH, Morrison CJ, McMaster WR (1995) Analysis of the active site and activation mechanism of the Leishmania surface metalloproteinase GP63. Biochim Biophys Acta 1253:199–207PubMedGoogle Scholar
  18. McGhee RB, Cosgrove WB (1980) Biology and physiology of the lower Trypanosomatidae. Microbiol Rev 44:140–173PubMedGoogle Scholar
  19. Pacheco RS, Marzochi MC, Pires MQ, Brito CM, Madeira MF, Barbosa-Santos EG (1998) Parasite genotypically related to a monoxenous trypanosomatid of dog’s flea causing opportunistic infection in an HIV positive patient. Mem Inst Oswaldo Cruz 93:531–537PubMedGoogle Scholar
  20. Previato JO, Mendonca-Previato L, Jones C, Wait R, Foumet B (1992) Structural characterization of a novel class of glycophosphosphingolipids from the protozoan Leptomonas samueli. J Biol Chem 267:24279–24286PubMedGoogle Scholar
  21. Santos ALS, Abreu CM, Alviano CS, Soares RMA (2005) Use of proteolytic enzymes as an additional tool for trypanosomatid identification. Parasitology 130:79–88CrossRefPubMedGoogle Scholar
  22. Santos ALS, Branquinha MH, d’Avila-Levy CM (2006) The ubiquitous gp63-like metalloprotease from lower trypanosomatids: in the search for a function. An Acad Bras Ciênc 78:687–714CrossRefPubMedGoogle Scholar
  23. Santos ALS, d’Avila-Levy CM, Elias CGR, Vermelho AB, Branquinha MH (2007) Phytomonas serpens: immunological similarities with the human trypanosomatid pathogens. Microb Infect 9:915–921CrossRefGoogle Scholar
  24. Yao C, Donelson JE, Wilson ME (2003) The major surface protease (MSP or GP63) of Leishmania sp. biosynthesis, regulation of expression, and function. Mol Biochem Parasitol 32:1–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • F. M. Pereira
    • 1
  • P. S. Bernardo
    • 1
  • P. F. F. Dias Junior
    • 1
  • B. A. Silva
    • 1
  • M. T. V. Romanos
    • 2
  • C. M. d’Avila-Levy
    • 3
  • M. H. Branquinha
    • 4
  • A. L. S. Santos
    • 1
    Email author
  1. 1.Laboratório de Estudos Integrados em Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes (IMPPG), Centro de Ciências da Saúde (CCS), Bloco E-subsoloUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  2. 2.Laboratório Experimental de Drogas Antivirais e Citotóxicas, Departamento de Virologia, IMPPG, CCSUFRJRio de JaneiroBrazil
  3. 3.Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC)FIOCRUZRio de JaneiroBrazil
  4. 4.Laboratório de Bioquímica de Proteases, Departamento de Microbiologia Geral, IMPPG, CCSUFRJRio de JaneiroBrazil

Personalised recommendations