Parasitology Research

, Volume 104, Issue 2, pp 281–286

Mediation of oviposition responses in the malaria mosquito Anopheles stephensi Liston by certain fatty acid esters

  • Kavita R. Sharma
  • T. Seenivasagan
  • A. N. Rao
  • K. Ganesan
  • O. P. Agrawal
  • Shri Prakash
Original Paper


The chemical factors involved in oviposition site selection by mosquitoes have become the focus of interest in recent years, and considerable attention is paid to the chemical cues influencing mosquito oviposition. Studies on synthetic oviposition attractants/repellents of long-chain fatty acid esters against Anopheles stephensi are limited. Screening and identification of chemicals which potentially attract/repel the gravid females to/or from oviposition site could be exploited for eco-friendly mosquito management strategies. The ester compounds demonstrated their ability to repel and attract the gravid A. stephensi females in the treated substrates. Significant level of concentration-dependent negative oviposition response of mosquitoes to octadecyl propanoate, heptadecyl butanoate, hexadecyl pentanoate, and tetradecyl heptanoate were observed. In contrast, decyl undecanoate, nonyl dodecanoate, pentyl hexadecanoate, and propyl octadecanoate elicited concentration-dependent positive oviposition responses from the gravid mosquitoes. Forcing a female to retain her eggs due to unavailability of a suitable oviposition site and attracting them to lay the eggs in a baited ovitraps shall ensure effective control of mosquito breeding and population buildup because the oviposition bioassay target the most susceptible stage of an insect life cycle. Treating relatively smaller natural breeding sites with an effective repellent and placing ovitraps containing an attractant in combination with insect-growth regulator (IGR)/insecticide would be a promising method of mosquito management.


  1. Allan SA, Kline DL (1998) Larval rearing water and preexisting eggs influence oviposition by Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J Med Entomol 35:943–947PubMedGoogle Scholar
  2. Angelon KA, Petranka (2002) Chemicals of predatory mosquitofish (Gambusia affinis) influence selection of oviposition site by Culex mosquitoes. J Chem Ecol 28:797–805Google Scholar
  3. Beehler JW, Millar JG, Mulla MS (1994) Field evaluation of synthetic compounds mediating oviposition in Culex mosquitoes (Diptera: Culicidae). J Chem Ecol 20:281–291CrossRefGoogle Scholar
  4. Bentley MD, McDaniel NL, Yatagai M, Lee HP, Maynard R (1979) p-cresol: an oviposition attractant of Aedes triseriatus. Environ Entomol 8:206–209Google Scholar
  5. Bentley MD, McDaniel IN, Davis EE (1982) Studies of 4-methyl cyclochexanol: an Aedes triseriatus (Diptera: Culicidae) oviposition attractant. J Med Entomol 19:589–592PubMedGoogle Scholar
  6. Blackwell A, Johnson SN (2000) Electrophysiological investigation of larval water and potential oviposition chemo-attractants for Anopheles gambiae s.s. Ann Trop Med Parasitol 94:389–398PubMedGoogle Scholar
  7. Bray AM (2003) Ovipositional behaviour of Anopheles gambiae as influenced by variable substrates and chemicals. Michigan State University, MichiganGoogle Scholar
  8. Carde RT (1984) Chemo-orientation in flying insects. In: Bell WJ, Carde RT (eds) Chemical ecology of insects. Chapman and Hall, New YorkGoogle Scholar
  9. Chadee DD (1993) Oviposition response of Aedes aegypti (L.) to presence of conspecific eggs in the field in Trinidad, W. I. J Flordia Mosq Control Assoc 64:63–66Google Scholar
  10. Chadee DD (1997) Effects of forced egg-retention on the oviposition patterns of female Aedes aegypti (Diptera: Culicidae). Bull Ent Res 87:649–651CrossRefGoogle Scholar
  11. Clements AN (1999) The biology of mosquitoes, vol. 2. CABI, New YorkGoogle Scholar
  12. Collins FH, Paskewitz SM (1995) Malaria: current and future prospects for control. Ann Rev Entomol 40:195–219CrossRefGoogle Scholar
  13. Corbet PS, Chadee DD (1993) An improved method for detecting substrate preferences shown by mosquitoes that exhibit ‘skip-oviposition’. Physiol Entomol 18:114–118CrossRefGoogle Scholar
  14. Du YJ, Millar JG (1999) Electroantennogram and oviposition bioassay responses of Culex quinquefasciatus and Culex tarsalis (Diptera: Culicidae) to chemicals in odours from Bermuda grass infusions. J Med Entomol 36:158–166PubMedGoogle Scholar
  15. Edgerly JS, McFarland M, Morgan P, Livdahl T (1998) A seasonal shift in egg-laying behavior in response to cues of future competition in a treehole mosquito. J Anim Ecol 67:805–818CrossRefGoogle Scholar
  16. Ferkovich SM, van Essen F, Taylor TR (1980) Hydrolysis of sex pheromone by antennal esterases of the cabbage looper, Trichoplusia ni. Chem Senses 5:33–46CrossRefGoogle Scholar
  17. Foster SP, Harris MO (1997) Behavioural manipulation methods for insect pest management. Ann Rev Entomol 42:123–146CrossRefGoogle Scholar
  18. Fradin MS, Day JF (2002) Comparative efficacy of insect repellents against mosquito bite. New England J Med 347:13–18CrossRefGoogle Scholar
  19. Ganesan K, Mendki MJ, Suryanarayana MVS, Prakash S, Malhotra RC (2006) Studies of Aedes aegypti (Diptera: Culicidae) ovipositional responses to newly identified semiochemicals from conspecific eggs. Aust J Entomol 45:75–80CrossRefGoogle Scholar
  20. Gibson G, Torr SJ (1999) Visual and olfactory responses of haematophagous diptera to host stimuli. Med Vet Entomol 13:2–23CrossRefPubMedGoogle Scholar
  21. Gu W, Regens JL, Beier JC, Novak RJ (2006) Source reduction of mosquito larval habitats has unexpected consequences on malaria transmission. Proc Natl Acad Sci USA 103:17560–17563CrossRefPubMedGoogle Scholar
  22. Huang J, Walker ED, Giroux PY, Vulule J, Miller JR (2005) Ovipositional site selection by Anopheles gambiae: influences of substrate moisture and texture. Med Vet Entomol 19:442–450CrossRefPubMedGoogle Scholar
  23. Huang J, Miller JR, Chen S, Vulule JM, Walker ED (2006) Anopheles gambiae (Diptera: Culicidae) oviposition in response to agarose media and cultured bacterial volatiles. J Med Entomol 43:498–504CrossRefPubMedGoogle Scholar
  24. Jacobson M, Ohinta K, Chambers DL, Jones WA, Fujimoto MS (1973) Insect sex attractants. 13. Isolation, identification and synthesis of sex pheromones of the male Mediterranean fruit fly. J Med Chem 16:248–251CrossRefPubMedGoogle Scholar
  25. Kiflawi M, Blaustein L, Mengel M (2003) Oviposition habitat selection by the mosquito Culiseta longiareolata in response to risk of predation and conspecific larval density. Ecol Entomol 28:168–173CrossRefGoogle Scholar
  26. Knols BGJ, Sumba LA, Guda TO, Deng AL, Hassanali A, Beier JC (2004) Mediation of oviposition site selection in the Africa malaria mosquito Anopheles gambiae (Diptera: Culicidae) by semiochemicals of microbial origin. Int J Trop Insect Sci 24:260–265Google Scholar
  27. Kramer WL, Mulla MS (1979) Oviposition attractants and repellents of mosquitoes: oviposition responses of Culex mosquitoes to organic infusions. Environ Entomol 8:1111–1117Google Scholar
  28. LeMenach A, McKenzie FE, Flahault A, Smith DL (2005) The unexpected importance of mosquito oviposition behaviour for malaria: non-productive larval habitats can be sources for malaria transmission. Malar J 4:23CrossRefGoogle Scholar
  29. McCrae AWR (1984) Oviposition by African malaria vector mosquitoes II: Effect of site tone, water type and conspecific immatures on target selection by freshwater Anopheles gambiae Giles, sensu lato. Ann Trop Med Parasitol 78:307–318PubMedGoogle Scholar
  30. McCrae AWR (1998) Oviposition site selection and the fate of eggs in fresh water Anopheles gambiae Giles sensu lato (Culicidae). Oxford, UK, p 140Google Scholar
  31. Millar JR, Roelofs WL (1977) Sex pheromone titer correlated with pheromone gland development and age in the redbanded leafroller moth, Argyrotaenia velutiana. Ann Ent Soc Am 70:136–139Google Scholar
  32. Millar JG, Chaney JD, Mulla MS (1992) Identification of oviposition attractants for Culex quinquefasciatus from fermented Bermuda grass infusions. J Am Mosq Control Assoc 8:11–17PubMedGoogle Scholar
  33. Navarro DMAF, de Olivera PES, Potting RPJ, Britto AC, Fital SJ, Santana AEG (2003) The oviposition attractant or repellent effects of different water types on oviposition in Aedes aegypti L. (Diptera: Culicidae). J Appl Entomol 127:46–50CrossRefGoogle Scholar
  34. Onyabe D, Roitberg BD (1997) The effect of conspecifics on the oviposition site selection and oviposition behaviour in Aedes togi (Theobald) (Diptera: Culicidae). Can Entomol 129:1173–1176CrossRefGoogle Scholar
  35. Perry AS, Fay RW (1967) Correlation of chemical constitution and physical properties of fatty acid esters with oviposition response of Aedes aegypti. Mosq News 27:175–183Google Scholar
  36. Pickett JA, Woodcock CM (1996) The role of olfaction in oviposition site location and in the avoidance of unsuitable hosts. Olfaction in mosquito host interactions. Chichester, England, WileyGoogle Scholar
  37. Priesner E, Jacobson M, Bestman HJ (1977) Structure response relationships in noctuid sex pheromone reception. An introductory report. Z Naturfosch Teil C 30:283–293Google Scholar
  38. Ranson H, rossiter L, Ortelli F, Jesen B, Wang X, Roth CW, Collins FH, Hemingway J (2001) Identification of a novel class of insect glutathione S-transferase involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem J 359:295–304CrossRefPubMedGoogle Scholar
  39. Rejmankova E, Pope K, Roberts D, Lege M, Andre R, Greico J, Alonzo Y (1996) Anopheles albimanus (Diptera: Culicidae) and Cyanobacteria: an example of larval habitat selection. Environ Entomol 25:1065–1067Google Scholar
  40. Sharma KR, Seenivasagan T, Rao AN, Ganesan K, Agarwal OP, Malhotra RC, Prakash S (2008) Oviposition responses of Aedes aegypti and Aedes albopictus to certain fatty acid esters. Parasitol Res. doi:10.1007/s00436-008-1094-1
  41. Spencer M, Blaustein L, Cohen JE (2002) Ovipositional habitat selection by mosquitoes (Culiseta longiareolata) and consequences for population size. Ecol 82:669–679CrossRefGoogle Scholar
  42. Sumba LA, Guda TO, Deng AL, Hassanali A, Beier JC, Knols BGJ (2004) Mediation of oviposition site selection in the African malaria mosquito Anopheles gambiae (Diptera: Culicidae) by semiochemicals of microbial origin. Int J Trop Insect Sci 24:260–265Google Scholar
  43. Takken W, Knols BGJ (1999) Odour mediated behaviour of Afrotropical malaria mosquitoes. Ann Rev Entomol 35:636–645Google Scholar
  44. Trexler JD, Apperson CS, Schal C (1998) Laboratory and field evaluations of oviposition responses of Aedes albopictus and Aedes triseriatus (Diptera: Culicidae) to oak leaf infusions. J Med Entomol 35:967–977PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Kavita R. Sharma
    • 1
  • T. Seenivasagan
    • 1
  • A. N. Rao
    • 1
  • K. Ganesan
    • 1
  • O. P. Agrawal
    • 2
  • Shri Prakash
    • 1
  1. 1.Defence Research & Development EstablishmentGwaliorIndia
  2. 2.School of Studies in ZoologyJiwaji UniversityGwaliorIndia

Personalised recommendations