Parasitology Research

, 103:735 | Cite as

The detection and quantification of a digenean infection in the snail host with special emphasis on Fasciola sp.



In this review, ten methods used to study digenean infections in their intermediate hosts were compared to determine which one should be used either in the field or in the lab to establish the prevalence and intensity of infections in snails. Snail crushing and snail dissection allow quick establishing of prevalence in natural or experimental infections, whereas histology is considered as the most accurate approach to assess the intensity of infection. The follow-up of cercarial shedding only gave an idea on cercarial production. Among recently developed techniques, polymerase chain reaction (PCR) brings the most accurate information and shows high sensitivity and specificity levels when compared to blotting techniques. The easiness and relatively low cost of the basic PCR protocol make it interesting to investigate the epidemiology of the liver fluke in a lab with limited financial resources. Nevertheless, if this technique allows a relatively good estimation of the prevalence, information concerning the intensity of infection is best obtained through real time PCR. However, at the time being this technique is too expensive to be used routinely in the field. The choice between classical or new techniques is usually based on a compromise, as each technique has its advantages and drawbacks.


Polymerase Chain Reaction Intermediate Host Multiplex Polymerase Chain Reaction Liver Fluke Polymerase Chain Reaction Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abrous M, Rondelaud D, Dreyfuss G, Cabaret J (1999) Infection of Lymnaea truncatula and Lymnaea glabra by Fasciola hepatica and Paramphistomum daubneyi in farms of central France. Vet Res 30:113–118PubMedGoogle Scholar
  2. Abrous M, Rondelaud D, Dreyfuss G (2000) A field study of natural infections in three freshwater snails with Fasciola hepatica and/or Paramphistomum daubneyi in central France. J Helminthol 74:189–194PubMedGoogle Scholar
  3. Audousset JC, Rondelaud D, Dreyfuss G, Vareille-Morel C (1989) Les émissions cercariennes de Fasciola hepatica L. chez le mollusque Lymnaea truncatula Müller. A propos de quelques observations chronobiologiques. Bull Soc Fr Parasitol 7:217–224Google Scholar
  4. Barber IW (1962) The pathology produced in the snail Lymnaea columella Say, 1817, by the larval stages of Fasciola hepatica L., 1758. University of California, BerkeleyGoogle Scholar
  5. Barker RH Jr. (1994) Use of PCR in the field. Parasitol Today 10:117–119PubMedCrossRefGoogle Scholar
  6. Barry T, Rowel R, Gannon F (1990) A general method to generate DNA probes for microorganisms. Biotechnology 8:233–236PubMedCrossRefGoogle Scholar
  7. Belfaiza M, Rondelaud D, Moncef M, Dreyfuss G (2004a) Fasciola hepatica: cercarial productivity of redial generations in long-surviving Galba truncatula. J Helminthol 78:115–120PubMedCrossRefGoogle Scholar
  8. Belfaiza M, Rondelaud D, Moncef M, Dreyfuss G (2004b) Fasciola hepatica: the effect of food quality on the development of redial generations in Galba truncatula infected with allopatric miracidia. Parasitol Res 92:12–17PubMedCrossRefGoogle Scholar
  9. Belfaiza M, Moncef M, Rondelaud D (2005) Fasciola hepatica: an unusual case of adaptation to a Moroccan population of Galba truncatula. Parasitol Res 95:374–378PubMedCrossRefGoogle Scholar
  10. Boray JC (1978) The potential impact of exotic Lymnaea spp. on fascioliasis in Australasia. Vet Parasitol 4:127–141CrossRefGoogle Scholar
  11. Calvopina M, Armijos RX, Marco JD, Uezato H, Kato H, Gomez EA, Korenaga M, Barroso PA, Mimori T, Cooper PJ, Nonaka S, Hashiguchi Y (2006) Leishmania isoenzyme polymorphisms in Ecuador: relationships with geographic distribution and clinical presentation. BMC Infect Dis 6:139PubMedCrossRefGoogle Scholar
  12. Cancrini G, Iori A (2004) Traditional and innovative diagnostic tools: when and why they should be applied. Parassitologia 46:173–176PubMedGoogle Scholar
  13. Caron Y, Lasri S, Losson B (2007) Fasciola hepatica: an assessment on the vectorial capacity of Radix labiata and R. balthica commonly found in Belgium. Vet Parasitol 149:95–103PubMedCrossRefGoogle Scholar
  14. Cucher MA, Carnevale S, Prepelitchi L, Labbe JH, Wisnivesky-Colli C (2006) PCR diagnosis of Fasciola hepatica in field-collected Lymnaea columella and Lymnaea viatrix snails. Vet Parasitol 137:74–82PubMedCrossRefGoogle Scholar
  15. Dassler HG, Schmiedel T (1989) Ultrathin-layer starch gel electrophoresis: a method qualified to solve specific problems in enzyme analysis. Pharmazie 44:34–36PubMedGoogle Scholar
  16. Delves CJ, Goman M, Ridley RG, Matile H, Lensen TH, Ponnudurai T, Scaife JG (1989) Identification of Plasmodium falciparum-infected mosquitoes using a probe containing repetitive DNA. Mol Biochem Parasitol 32:105–112PubMedCrossRefGoogle Scholar
  17. Dreyfuss G, Rondelaud D (1995) Comparative studies on the productivity of Fasciola gigantica and F. hepatica sporocysts in Lymnaea tomentosa that died after a cercarial shedding or without emission. Parasitol Res 81:531–536PubMedCrossRefGoogle Scholar
  18. Dreyfuss G, Vignoles P, Rondelaud D (2005) Fasciola hepatica: epidemiological surveillance of natural watercress beds in central France. Parasitol Res 95:278–282PubMedCrossRefGoogle Scholar
  19. Erhardová-Kotrlá B (1971) The occurrence of Fascioloides magna (Bassi, 1875) in Czechoslovakia. Academia, PragueGoogle Scholar
  20. Gasser RB (1999) PCR-based technology in veterinary parasitology. Vet Parasitol 84:229–258PubMedCrossRefGoogle Scholar
  21. Graczyk TK, Fried B (1999) Development of Fasciola hepatica in the intermediate host. In: Dalton JP (ed) Fasciolosis. CABI, Wallingford, Oxon, pp 31–46Google Scholar
  22. Hamburger J, Hoffman O, Kariuki HC, Muchiri EM, Ouma JH, Koech DK, Sturrock RF, King CH (2004) Large-scale, polymerase chain reaction-based surveillance of Schistosoma haematobium DNA in snails from transmission sites in coastal Kenya: a new tool for studying the dynamics of snail infection. Am J Trop Med Hyg 71:765–773PubMedGoogle Scholar
  23. Heussler V, Kaufmann H, Strahm D, Liz J, Dobbelaere D (1993) DNA probes for the detection of Fasciola hepatica in snails. Mol Cell Probes 7:261–267PubMedCrossRefGoogle Scholar
  24. Hodasi JK (1972) The output of cercariae of Fasciola hepatica by Lymnaea truncatula and the distribution of metacercariae on grass. Parasitology 64:53–60PubMedGoogle Scholar
  25. Hubscher U (1991) DNA diagnosis in veterinary medicine: II. Polymerase chain reaction (PCR). Schweiz Arch Tierh.kd 133:27–31Google Scholar
  26. Kaplan RM, Dame JB, Reddy GR, Courtney CH (1995) A repetitive DNA probe for the sensitive detection of Fasciola hepatica infected snails. Int J Parasitol 25:601–610PubMedCrossRefGoogle Scholar
  27. Kaplan RM, Dame JB, Reddy GR, Courtney CH (1997) The prevalence of Fasciola hepatica in its snail intermediate host determined by DNA probe assay. Int J Parasitol 27:1585–1593PubMedCrossRefGoogle Scholar
  28. Kendall SB, McCullough FS (1951) The emergence of cercariae of Fasciola hepatica from the snail Limnaea truncatula. J Helminthol 25:77–92Google Scholar
  29. Krämer F (1999) Eignung einer Gensonde zum nachweis Derentwicklungsstadien von Fasciola hepatics Linne 1758 im Zwischenwirt. Tierärztliche Hoschschule, HannoverGoogle Scholar
  30. Krämer F, Schnieder T (1998) Sequence heterogeneity in a repetitive DNA element of Fasciola. Int J Parasitol 28:1923–1929PubMedCrossRefGoogle Scholar
  31. Krämer F, Schnieder T (1999) Untersuchungen über den Zwischenwirt von Fasciola hepatica mittels einer DNA-Sonde zur Etablierung eines epidemiologischen Diagnostikverfahrens. PrakTierarzt 80:520–529Google Scholar
  32. Kukla BA, Majiwa PA, Young JR, Moloo SK, ole-MoiYoi OK (1987) Use of species-specific DNA probes for detection and identification of trypanosome infection in tsetse flies. Parasitology 95:1–16PubMedCrossRefGoogle Scholar
  33. Le Riche PD, Sewell MM (1977) Differentiation of Taenia saginata and Taenia solium by enzyme electrophoresis. Trans R Soc Trop Med Hyg 71:327–328PubMedCrossRefGoogle Scholar
  34. Le Riche PD, Sewell MM (1978a) Identification of Echinococcus granulosus strains by enzyme electrophoresis. Res Vet Sci 25:247–248PubMedGoogle Scholar
  35. Le Riche PD, Sewell MM (1978b) Differentiation of taeniid cestodes by enzyme electrophoresis. Int J Parasitol 8:479–483PubMedCrossRefGoogle Scholar
  36. Magalhaes KG, Passos LK, Carvalho Odos S (2004) Detection of Lymnaea columella infection by Fasciola hepatica through Multiplex-PCR. Mem Inst Oswaldo Cruz 99:421–424PubMedGoogle Scholar
  37. Mage C, Bourgne H, Toullieu JM, Rondelaud D, Dreyfuss G (2002) Fasciola hepatica and Paramphistomum daubneyi: changes in prevalences of natural infections in cattle and in Lymnaea truncatula from central France over the past 12 years. Vet Res 33:439–447PubMedCrossRefGoogle Scholar
  38. McLaughlin GL, Collins WE, Campbell GH (1987) Comparison of genomic, plasmid, synthetic, and combined DNA probes for detecting Plasmodium falciparum DNA. J Clin Microbiol 25:791–795PubMedGoogle Scholar
  39. Mostafa OM, Taha HA, Ramadan G (2003) Diagnosis of Fasciola gigantica in snail using the polymerase chain reaction (PCR) assay. J Egypt Soc Parasitol 33:733–742PubMedGoogle Scholar
  40. Moukrim A, Zekhnini A, Rondelaud D (1995) A comparative study of the shedding of cercariae of Schistosoma haematobium in newborn Bulinus truncatus. Parasitol Res 81:537–539PubMedCrossRefGoogle Scholar
  41. Pointier JP, Coustau C, Rondelaud D, Theron A (2007) Pseudosuccinea columella (Say 1817) (Gastropoda, Lymnaeidae), snail host of Fasciola hepatica: first record for France in the wild. Parasitol Res 101:1389–1392PubMedCrossRefGoogle Scholar
  42. Prichard R (1997) Application of molecular biology in veterinary parasitology. Vet Parasitol 71:155–175PubMedCrossRefGoogle Scholar
  43. Rognlie MC, Dimke KL, Knapp SE (1994) Detection of Fasciola hepatica in infected intermediate hosts using RT-PCR. J Parasitol 80:748–755PubMedCrossRefGoogle Scholar
  44. Rognlie MC, Dimke KL, Potts RS, Knapp SE (1996) Seasonal transmission of Fasciola hepatica in Montana, USA, with detection of infected intermediate hosts using a DNA-based assay. Vet Parasitol 65:297–305PubMedCrossRefGoogle Scholar
  45. Rondelaud D, Barthe D (1980a) Données histopathologiques sur l'épithélium génital de Lymnaea truncatula Müller infestée par Fasciola hepatica L. Bull Soc Zool Fr 105:481–490Google Scholar
  46. Rondelaud D, Barthe D (1980b) Fasciola hepatica L.: les formes larvaires non évolutives ou en dégénérescence chez Lymnaea truncatula Müller. Z Parasitenkd 62:95–104PubMedCrossRefGoogle Scholar
  47. Rondelaud D, Barthe D (1982) Les générations rédiennes de Fasciola hepatica L. chez Lymnaea truncatula Müller. A Propos des effets de plusieurs facteurs. Ann Parasitol Hum Comp 57:245–261PubMedGoogle Scholar
  48. Rondelaud D, Barthe D (1983) Les modifications stucturales du rein chez Lymnaea truncatula Müller infestée par Fasciola hepatica L. Ann Parasitol Hum Comp 58:109–116PubMedGoogle Scholar
  49. Rondelaud D, Barthe D (1987) Fasciola hepatica L.: the productivity of a sporocyst as a function of the size of Lymnaea truncatula Muller. Parasitol Res 74:155–160PubMedCrossRefGoogle Scholar
  50. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for the diagnosis of sickle-cell anemia. Science 230:1350–1354PubMedCrossRefGoogle Scholar
  51. Schweizer G, Meli ML, Torgerson PR, Lutz H, Deplazes P, Braun U (2007) Prevalence of Fasciola hepatica in the intermediate host Lymnaea truncatula detected by real time TaqMan PCR in populations from 70 Swiss farms with cattle husbandry. Vet Parasitol 150:164–169PubMedCrossRefGoogle Scholar
  52. Severson WE (1991) The development of a diagnostic assay for Tritrichomonas foetus. Montana State University, BozemanGoogle Scholar
  53. Shubkin CD, White MW, Abrahamsen MS, Rognlie MC, Knapp SE (1992) A nucleic acid-based test for detection of Fasciola hepatica. J Parasitol 78:817–821PubMedCrossRefGoogle Scholar
  54. Taylor EL (1965) Fascioliasis and the liver fluke. FAO agricultural studies edition.vol 64. FAO Agricultural Studies, RomeGoogle Scholar
  55. Torgerson P, Claxton J (1999) Epidemiology and control. In: Dalton JP (ed) Fasciolosis. CABI, Wallingford, Oxon, pp 113–149Google Scholar
  56. Van Aken D (1982) Detection of the larval stages of Fasciola hepatica in Lymnaea truncatula by enzyme electrophoresis, Diergeneeskunde IvTGA, ed. Instituut voor Tropische Geneeskunde Afdeling Diergeneeskunde, AntwerpenGoogle Scholar
  57. Van Aken D, Brandt J (1987) Preliminary observations on the detection of the larval stages of Fasciola hepatica in Lymnaea truncatula by enzyme-electrophoresis. Ann Soc Belge Med Trop 67:295–298Google Scholar
  58. Velusamy R, Singh BP, Raina OK (2004) Detection of Fasciola gigantica infection in snails by polymerase chain reaction. Vet Parasitol 120:85–90PubMedCrossRefGoogle Scholar
  59. Vignoles P, Dreyfuss G, Rondelaud D (2002) Larval development of Fasciola hepatica in experimental infections: variations with populations of Lymnaea truncatula. J Helminthol 76:179–183PubMedCrossRefGoogle Scholar
  60. Vignoles P, Rondelaud D, Dreyfuss G (2008) Paramphistomum daubneyi: production dynamics and infectivity of metacercariae originating from snails dissected at regular intervals. J Helminthol 82:175–180PubMedCrossRefGoogle Scholar
  61. Walsh PS, Metzger DA, Higuchi R (1991) ChelexÒ100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechnology 10:506–513Google Scholar
  62. Waters AP, McCuthan TF (1990) Ribosomal RNA: nature's own polymerase-amplified target for diagnosis. Parasitol Today 6:56–59PubMedCrossRefGoogle Scholar
  63. Webster P, Mansour TE, Bieber D (1989) Isolation of a female-specific, highly repeated Schistosoma mansoni DNA probe and its use in an assay of cercarial sex. Mol Biochem Parasitol 36:217–222PubMedCrossRefGoogle Scholar
  64. Weiss JB (1995) DNA probes and PCR for diagnosis of parasitic infections. Clin Microbiol Rev 8:113–130PubMedGoogle Scholar
  65. Yeo M, Lewis MD, Carrasco HJ, Acosta N, Llewellyn M, da Silva Valente SA, de Costa Valente V, de Arias AR, Miles MA (2007) Resolution of multiclonal infections of Trypanosoma cruzi from naturally infected triatomine bugs and from experimentally infected mice by direct plating on a sensitive solid medium. Int J Parasitol 37:111–120PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Yannick Caron
    • 1
  • Daniel Rondelaud
    • 2
  • Bertrand Losson
    • 1
  1. 1.Faculty of Veterinary Medicine, Department of Infectious DiseasesUniversity of LiègeLiègeBelgium
  2. 2.UPRES EA no. 3174Faculty of MedicineLimoges CedexFrance

Personalised recommendations