Parasitology Research

, 103:253 | Cite as

Nanosilica—from medicine to pest control

Review

Abstract

Nanotechnology is a broad interdisciplinary area of research, development, and industrial activity that has been growing rapidly worldwide for the past decade. More ambitious uses of nanoparticles are bioremediation of contaminated environments, controlled release of fragrances, biocides, and antifungals on textiles. Silica nanocomposites have received much attention because of its thermal degradation behavior and applications in chromatography, medicine, optics, etc. Nanobiotech takes agriculture from the battleground of genetically modified organisms to the brave new world of atomically modified organisms where rice has been modified atomically. Silica has been widely applied in various industries. Application of gold-coated silica has been used in the treatment for benign and malignant tumor. Surface-modified hydrophobic as well as lipophilic nanosilica could be effectively used as novel drugs for treatment of chicken malaria and nuclear polyhedrosis virus (BmNPV), a scourge in silkworm industry. Here, the authors attempt to provide a review to explain the impact of nanosilica on basic biology, medicine, agro-nanoproducts, and use of amorphous nanosilica as biopesticide.

References

  1. Akbarian F, Lin A, Dunn BS, Valentine JS, Zink JI (1997) Spectroscopic determination of cholinesterase activity and inhibition in sol-gel media. J Sol-Gel Sci Technol 8:1067–1070Google Scholar
  2. Alexey A, Vertegel R, Siegel W, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–6807CrossRefGoogle Scholar
  3. Alyushin MT, Astakhova MN (1971) Aerosil and its application in pharmaceutical practice. Pharmacy 6:73–77Google Scholar
  4. Avnir D, Braun S, Lev O, Ottolenghi O (1994) Enzymes and other proteins entrapped in sol-gel materials. Chem Mater 6(10):1605–1614CrossRefGoogle Scholar
  5. Blitz JP, Gun’ko VM (eds) (2006) In: Surface chemistry in biomedical and environmental science, NATO science series II: mathematics, physics and chemistry. vol. 228. Springer, DordrechtGoogle Scholar
  6. Bower CK, Sananikone S, Bothwell MK, McGuire J (1998) Activity losses among T4 lysozyme charge variants after adsorption to colloidal silica. Biotechnol Bioeng 64(3):373–376CrossRefGoogle Scholar
  7. Brongersma ML (2003) Nanoscale photonics: nanoshells: gifts in a gold wrapper. Nat Mater 2:296–297PubMedCrossRefGoogle Scholar
  8. Che S, Bennett AEG, Yokoi T, Sakamoto K, Kunieda H, Terasaki O, Tatsumi T (2003) A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nat Mater 2:801–805PubMedCrossRefGoogle Scholar
  9. Chuiko AA (ed) (2003) In: Medical chemistry and clinical application of silicon dioxide. Nukova Dumka, KievGoogle Scholar
  10. Czeslik C, Winter R (2001) Effect of temperature on the conformation of lysozyme adsorbed to silica particles. Phys Chem Chem Phys 3:235–239CrossRefGoogle Scholar
  11. Diociaiuti M, Bordi F, Gataleta L, Baldo G, Crateri P, Paoletti L (1999) Morphological and functional alterations of human erythrocytes induced by SiO2 particles: an electron microscopy and dielectric spectroscopy study. Environ Res A 80:197–207CrossRefGoogle Scholar
  12. Ferracane JL, Berge HX, Condon JR (1998) In vitro aging of dental composites in water—effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Mater Res 42:465–472PubMedCrossRefGoogle Scholar
  13. Gerashchenko BI, Gerashchenko II, Bogomaz VI, Pantazis CG (1994) Adsorption of aerosil on erythrocyte surface by flow cytometry measurement. Cytometry 15:80–83PubMedCrossRefGoogle Scholar
  14. Gerashchenko BI, Gerashchenko II, Pantazis CG (1996) Possible selective elimination of red blood cells under the influence of colloidal silica. Med Hypotheses 47:69–70PubMedCrossRefGoogle Scholar
  15. Gerashchenko BI, Gun’ko VM, Gerashchenko II, Leboda R, Hosoya H, Mironyuk IF (2002) Probing the silica surfaces by red blood cells. Cytometry 49(2):56–61PubMedCrossRefGoogle Scholar
  16. Gun’ko VM, Galagan NP, Grytsenko IV, Zarko VI, Oranska OI, Osaulenko VL, Bogatyrev VM, Turov VV (2007) Interaction of unmodified and partially silylated nanosilica with red blood cells. Cent Eur J Chem 5(4):951–969CrossRefGoogle Scholar
  17. Haruta M (2003) When gold is not noble: catalysis by nanoparticles. Chem Record 3(2):75–87CrossRefGoogle Scholar
  18. Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL (2003a) A whole blood immunoassay using gold nanoshells. Anal Chem 75(10):2377–2381PubMedCrossRefGoogle Scholar
  19. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003b) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci 100:13549–13554PubMedCrossRefGoogle Scholar
  20. Hui-Peng Y, Xiao-Feng W, Gokulamma K (2006) Antiviral activity in the mulberry silkworm. Bombyx mori L. J Zhejiang Univ Sci A 2:350–356Google Scholar
  21. Iler RK (1979) The chemistry of silica. Wiley, New YorkGoogle Scholar
  22. Kondo A, Murakami F, Kawagoe M, Higashitani K (1993) Kinetic and circular dichroism studies of enzymes adsorbed on ultrafine silica particles. Appl Microbiol Biotechnol 39(6):726–731PubMedCrossRefGoogle Scholar
  23. Kreuter J (ed) (1994) In: Colloidal drug delivery systems. Marcel Dekker, New YorkGoogle Scholar
  24. Lawry JV (2001) Insects separate diffusing particles in parallel. Nanotech Model Simul Microsyst 1:254–257Google Scholar
  25. Li X, Cao Z, Liu F, Zhang Z, Dang H (2006) A novel method of preparation of superhydrophobic nanosilica in aqueous solution. Chem Lett 35(1):1–2CrossRefGoogle Scholar
  26. Lim BS, Ferracane JL, Condon JR, Adey JD (2002) Effect of filler fraction and filler surface treatment on wear of microfilled composites. Dent Mater 18:1–11PubMedCrossRefGoogle Scholar
  27. Loza-Herrero MA, Rueggeberg FA, Caughman WF, Schuster GS, Lefebvre CA, Gardner FM (1998) Effect of heating delay on conversion and strength of a post-cured resin composite. J Dent Res 77:426–431PubMedCrossRefGoogle Scholar
  28. Majumder D, Banerjee R, Ulrichs C, Mewis I, Samanta A, Das A, Mukhopadhayay S, Adhikary S, Goswami A (2006) Nanofabricated materials in cancer treatment and agri-biotech applications: buckyballs in quantum holy grails.. IETE J Res 52:339–356 (Special Issue: Nano-electronic devices and technology)Google Scholar
  29. Majumder D, Ulrichs C, Mewis I, Weishaupt B, Majumder B, Ghosh A, Thakur AR, Brahmachary RL, Banerjee R, Rahman A, Debnath N, Seth D, Das S, Roy I, Sagar P, Schulz C, Quang-Linh N, Goswami A (2007) Current status and future trends of nanoscale technology and its impact on modern computing, biology, medicine and agricultural biotechnology, platinum jubilee symposium of the Indian statistical institute. In: Proceedings of the International Conference on Computing: Theory and Applications, ICCTA 2007; March 5–7, India. Conference Publication Proceedings, IEEE Press, 563–572Google Scholar
  30. Norde W, Anusiem ACI (1992) Adsorption, desorption and re-adsorption of proteins on solid surfaces. Colloids Surf 66:73–80CrossRefGoogle Scholar
  31. Pallav P, de Gee AJ, Davidson CL, Erickson RL, Glasspoole EA (1989) The influence of admixing microfiller to small-particle composite resin on wear, tensile strength, hardness, and surface roughness. J Dent Res 68:480–490Google Scholar
  32. Panteghini M, Ceriotti F, Schumann G, Siekmann L (2001) Establishing a reference system in clinical enzymology. Clin Chem Lab Med 39:795–800PubMedCrossRefGoogle Scholar
  33. Salleo A, Taylor ST, Martin MC, Panero W, Jeanloz R, Sands T, Génin FY (2003) Laser driven phase transformations in amorphous silica. Nat Mat 2(12):796CrossRefGoogle Scholar
  34. Sharma S, Goswami A, Singh NJ, Kabilan L, Deodhar SS (1996) Immunogenicity of the nonrepetitive regions of the circumsporozoite protein of Plasmodium knowlesi. Am J Trop Med Hyg 55:635–641PubMedGoogle Scholar
  35. Sun Q, Wang Q, Rao BK, Jena P (2004) Electronic structure and bonding of Au on a SiO2 Cluster: A nanobullet for tumors. Phys Rev Lett 93(18):186803PubMedCrossRefGoogle Scholar
  36. Suzuki K, Ikari K, Imai H (2004) Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system. J Am Chem Soc 126(2):462–463PubMedCrossRefGoogle Scholar
  37. Ulrichs C, Mewis I, Goswami A (2005) Crop diversification aiming nutritional security in West Bengal—biotechnology of stinging capsules in nature’s water-blooms. Ann Tech Issue of State Agri Technologists Service Assoc. ISSN 0971-975X, pp 1–18Google Scholar
  38. Ulrichs C, Entenmann S, Goswami A, Mewis I (2006a) Abrasive und hydrophil/lipophile Effekte unterschiedlicher inerter Stäube im Einsatz gegen Schadinsekten am Beispiel des Kornkäfers Sitophilus granarius L. Gesunde Pflanze 58:173–181CrossRefGoogle Scholar
  39. Ulrichs C, Goswami A, Mewis I (2006b) Amorphe silikathaltige Stäube, physikalisch wirkende Insektizide für den Gartenbau? 43. Wissenschaftliche Arbeitstagung der Deutschen Gartenbauwissen-schaftlichen Gesellschaft e.V, vol. 24. BHGL Schriftenreihe, Potsdam, p 116Google Scholar
  40. Ulrichs C, Krause F, Rocksch T, Goswami A, Mewis I (2006c) Electrostatic application of inert silica dust based insecticides to plant surfaces. In: 58th Int. Symposium on Crop Protection, May 23rd, Ghent University, Proc. 121Google Scholar
  41. Ulrichs C, Krause F, Rocksch T, Goswami A, Mewis I (2006d) Electrostatic application of inert silica dust based insecticides onto plant surfaces. Commun Agric Appl Biol Sci 71:171–178PubMedGoogle Scholar
  42. Ulrichs Ch, Chakrabarty R, Mewis I, Goswami A (2006e) Red tides of history: biotechnology of water bloom—I. In: International Seminar on Water, 3–4 March, Department of History DRS Programme (PHASE-I) Jadavpur University, Kolkata, India. Proceedings Book Volume. 11–12Google Scholar
  43. Ulrichs Ch, Chakrabarty R, Mewis I, Goswami A (2006f) Red tides of history: biotechnology of water bloom—II. In: International Seminar on Water, 3–4 March, Department of History DRS Programme (PHASE-I) Jadavpur University, Kolkata, India. Proceedings Book Volume. pp 11–12Google Scholar
  44. Ulrichs Ch, Mucha-Pelzer T, Reichmuth Ch, Goswami A, Mewis I (2006g) Amorphe silikatreiche Stäube –Wirkung auf Insekten. In: Fachveranstaltung des Umweltbundesamtes Berlin: Gesundheitsschutz durch Schädlingsbekämpfung-weiterhin möglich, BerlinGoogle Scholar
  45. Ulrichs C, Goswami A, Mewis I (2007) Nano-structured silica—physical active pesticides for urban settings. In: Proceedings of the second international symposium on plant protection and plant health in Europe, DPG-BCPC, Berlin, 10–12 May 2007Google Scholar
  46. Watts DC, Hindi AA (1999) Intrinsic “soft-start” polymerization shrinkage-kinetics in an acrylate-based resin composite. Dent Mater 15:39–45PubMedCrossRefGoogle Scholar
  47. Wendt SL (1987) The effect of heat as a secondary cure upon the physical properties of three composite resins: I. Diametral tensile strength, compressive strength and marginal dimensional stability. Quintessence Int 18:265–271PubMedGoogle Scholar
  48. Wiseman A (1985) Handbook of enzyme biotechnology. Horwood, ChichesterGoogle Scholar
  49. Xu HHK (2000) Whisker-reinforced heat-cured dental resin composites: effects of filler level and heat-cure temperature and time. J Dent Res 79:1392–1397PubMedGoogle Scholar
  50. Xu, HHK, Smith DT, Schumacher GE, Eichmiller FC, Antonucci JM (2000) Indentation modulus and hardness of whisker-reinforced heat-cured dental resin composites. Dent Mater 16:248–254PubMedCrossRefGoogle Scholar
  51. Yokoyoma M, Okano T (1996) Targetable drug carriers: present status and a future perspective. Adv Drug Delivery Rev 21:77–80CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of ZoologyUniversity of DelhiDelhiIndia
  2. 2.National Institute of Malaria Research 2DelhiIndia

Personalised recommendations