Parasitology Research

, Volume 103, Issue 1, pp 1–10 | Cite as

Leishmaniasis treatment—a challenge that remains: a review

  • Dilvani O. Santos
  • Carlos E. R. Coutinho
  • Maria F. Madeira
  • Carolina G. Bottino
  • Rodrigo T. Vieira
  • Samara B. Nascimento
  • Alice Bernardino
  • Saulo C. Bourguignon
  • Suzana Corte-Real
  • Rosa T. Pinho
  • Carlos Rangel Rodrigues
  • Helena C. Castro


Leishmaniasis is a disease caused by flagellate protozoan Leishmania spp. and represents an emergent illness with high morbidity and mortality in the tropics and subtropics. Since the discovery of the first drugs for Leishmaniasis treatment (i.e., pentavalent antimonials), until the current days, the search for substances with antileishmanial activity, without toxic effects, and able to overcome the emergence of drug resistant strains still remains as the current goal. This article reports the development of new chemotherapies through the rational design of new drugs, the use of products derived from microorganisms and plants, and treatments related to immunity as new alternatives for the chemotherapy of leishmaniasis.


  1. Alexander J, Russel DG (1992) The interaction of Leishmania species macrophages. In: Baker JR, Muller R (eds) Advances in parasitology. vol. 131. Academic, New York, USA, pp 175–254Google Scholar
  2. Arruda DC, Dalexandri FL, Katzin AM, Uliana SRB (2005) Antileishmanial activity of terpene nerolidol. Antimicrob Agents Chemother 49:1679–1687PubMedCrossRefGoogle Scholar
  3. Barral A, Pedral-Sampaio D, Grimaldi G Jr., Momen H, Mc Mahon-Pratt D, Ribeiro de Jesus A, Almeida R, Badaró R, Barral-Neto M, Carvalho EM, Johnson WD Jr (1991) Leishmaniasis in Bahia, Brazil: evidence that Leishmania amazonensis produces a wide spectrum of clinical disease. Am J Trop Med Hyg 44:536–546PubMedGoogle Scholar
  4. Berengener J, Gomez-Campdera F, Padilha B (1998) Visceral leishmaniasis (Kala-Azar) in transplant recipients: case report and review. Transplantation 65:1401–1404CrossRefGoogle Scholar
  5. Berman JD (1988) Chemotherapy for leishmaniasis: biochemical mechanisms, clinical efficacy and future strategies. Rev Infect Dis 10:560–586PubMedGoogle Scholar
  6. Bogdan C, Rollinghoff M, Solbato W (1990) Evasion strategies of leishmania parasite. Parasitol Today 6:183–187PubMedCrossRefGoogle Scholar
  7. Bogdan C, Gessner A, Solbach W, Rollinghoff M (1996) Invasion, control and persistence of leishmania parasites. Curr Opin Immunol 8:517–525PubMedCrossRefGoogle Scholar
  8. Bray PG, Barrett MP, Ward SA, Koning HP (2003) Pentamidine uptake and resistance in pathogenic protozoa: past, present and future. Trends Parasitol 19:232–239PubMedCrossRefGoogle Scholar
  9. Carvalho PB, Arribas MAG, Ferreira EI (2000) Leishmaniasis. What do we know about its chemotherapy? Braz J Pharm Sci 36:69–96Google Scholar
  10. Chang KP (1990) Cell biology of leishmania. In: Wyler DW (ed) Modem parasite biology cellular, immunological and molecular aspects. Freeman, New York, pp 79–90Google Scholar
  11. Corte-Real S, Santos CB, Meirelles MNL (1995) Differential expression of the plasma membrane Mg2+ ATPase and Ca2+ ATPase activity during adhesion and interiorization of Leishmania amazonensis in fibroblasts in vitro. J Submicrosc Cytol Pathol 27(3):359–366PubMedGoogle Scholar
  12. Coura JR, Galvão-Castro B, Grimaldi JG (1987) Disseminated American cutaneous leishmaniasis in a patient with AIDS. Mem Inst Osw Cruz 82:581–582Google Scholar
  13. Croft Sl, Seifert K, Yardley V (2006) Current scenario of drug development for leishmaniasis. Indian J Med Res 123(3):399–410PubMedGoogle Scholar
  14. Deane LM, Grimaldi G (1985) Leishmaniasis in Brazil. In: Chang KP, Bray RS (eds) Leishmaniasis. Elsevier, Amsterdam, pp 247–281Google Scholar
  15. Delorenzi JC, Attias M, Gattass C, Andrade M, Rezende C, Pinto AC, Henriques AT, Bou-Habib DC, Saraiva EM (2001) Antileishmanial activity of na índole alkaloid from Peschiera australis. Antimicrob Agents Chemother 45(5):1349–1354PubMedCrossRefGoogle Scholar
  16. Desjeux P, Alvar J (2003) Leishmania/HIV. Co-infections: epidemiology in Europe. Ann Trop Med Parasitol 97(suppp.1):3–15PubMedCrossRefGoogle Scholar
  17. Dey T, Anam K, Afrin F, Ali N (2000) Antileishmanial activities of stearylamina-bearing liposomes. Antimicrob Agents Chemother 44(6):1739–1742PubMedCrossRefGoogle Scholar
  18. Escobar P, Yardley V, Croft SL (2001) Activities of hexadecylphosphocholine (miltefosine), ambisome, and sodium stibogluconate (Pentostam) against Leishmania donovani in immunodeficient scid mice. Antimicrob Agents Chemother 45(6):1872–1875PubMedCrossRefGoogle Scholar
  19. Golenser J, Frankenburg S, Ehrenfreund T, Domb AJ (1999) Efficacious treatment of experimental leishmaniasis with amphotericin b-arabinogalactan water-soluble derivatives. Antimicrob Agents Chemother 43(9):2209–2214PubMedGoogle Scholar
  20. Gontijo B, Carvalho MLR (2003) Leishmaniose Tegumentar Americana. Revista de Sociedade Brasileira de Medicina Tropical 36(1):71–80Google Scholar
  21. Gontijo CMF, Melo MN (2004) Leishmaniose Visceral no Brasil: Quadro Atual, Desafios e Perspectivas. Rev Bras Epidemiol 7(3):338–349CrossRefGoogle Scholar
  22. Green SJ, Meltzer MS Jr, Hibbs JB, Nacy CA (1990) Activated macrophages destroy intracellular Leishmania major amastigotes by an l-arginine-dependent killing mechanism. J Immunol 144:278–283PubMedGoogle Scholar
  23. Grimaldi G Jr., Mc-Mahon-Pratt D, Sun T (1991) Leishmaniasis and its etiologic agents in the New World: an overview. Prog Clin Parasitol 2:73–118PubMedGoogle Scholar
  24. Grimaldi G Jr., Corte-Real S, Pinho RT (1983) Interactions between Leishmania mexicana mexicana promastigotes and amastigotes and murine peritoneal macrophages in vitro. Mem Inst Osw Cruz 78:136–146Google Scholar
  25. Hespanhol RC, Soeiro MNC, Corte-Real S (2005) The expression of mannose-receptor in skin fibroblast and their involvement in Leishmania (L.) amazonensis invasion. J Histochem Cytochem 53(1):35–44PubMedCrossRefGoogle Scholar
  26. Kar S, Kar K, Bhattacharya PK, Ghosh DK (1993) Experimental visceral leishmaniasis: role of trans-aconitic acid in combined chemotherapy. Antimicrob Agents Chemother 37(11):2459–2465PubMedGoogle Scholar
  27. Kayser O, Kiderlen AF, Bertels S, Siems K (2001) Antileishmanial activities of aphidicolin and its semisynthetic derivatives. Antimicrob Agents Chemother 45(1):288–292PubMedCrossRefGoogle Scholar
  28. Kuhlencord A, Maniera T, Eibl H, Unger C (1992) Hexadecylphosphocholine: oral treatment of visceral leishmaniasis in mice. Antimicrob Agents Chemother 36(8):1630–1634PubMedGoogle Scholar
  29. Larabi M, Yardley V, Loiseau PM, Appel M, Legrand P, Gulik A, Bories C, Croft SL, Barratt G (2003) Toxicity and antileishmanial activity of a new stable lipid suspension of amphotericin B. Antimicrob Agents Chemother 47(12):3774–3779PubMedCrossRefGoogle Scholar
  30. Liew FY, O’Donnell CA (1993) Immunology of leishmaniasis. Adv Parasitol 32:161–259PubMedCrossRefGoogle Scholar
  31. Lima LM, Barreiro EJ (2005) Bioisosterism: a useful strategy for molecular modification and drug design. Curr Med chem 12(1):23–49PubMedGoogle Scholar
  32. Liñares GE, Ravaschino EL, Rodriguez JB (2006) Progresses in the field of drug design to combat tropical protozoan parasitic diseases. Curr Med Chem 13:335–360PubMedCrossRefGoogle Scholar
  33. Ma G, Khan SI, Jacob MR, Tekwani BL, Li Z, Pasco DS, Walker LA, Khan IA (2004) Antimicrobial and antileishmanial activities of hipocrellins A and B. Antimicrob Agents Chemother 8(11):4450–4452CrossRefGoogle Scholar
  34. Mai A, Cerbara I, Valente S, Massa S, Walker LA, Tekwani BL (2004) Antimalarial and antileishmanial activities of aroyl-pyrrolyl-hydroxyamides, a new class of histone deacetylas inhibitors. Antimicrob Agents Chemother 48(4):1435–1436PubMedCrossRefGoogle Scholar
  35. Mcgregor A (1998) WHO warns of epidemic Leishmania? Lancet 351:575–575PubMedCrossRefGoogle Scholar
  36. Molina R, Gradoni L, Alvar J (2003) HIV and the transmission of Leishmania. Ann Trop Med Parasitol 97(Suppl. 1):29–45PubMedCrossRefGoogle Scholar
  37. Morales P, Torres JJ, Salavert M, Peman J, Lacruz J, Sole A (2003) Visceral leishmaniasis in lung transplantation. Transplant Proc 35:2001–2003PubMedCrossRefGoogle Scholar
  38. Mukhopadhyay S, Bhattacharyya S, Majhi R, De T, Naskar K, Majumdar S, Roy S (2000) Use of attenuated leishmanial parasite as an immunoprophylactic and immunotherapeutic agent against murine visceral leishmaniasis. Clin Diagn Lab Immunol 7(2):233–240PubMedCrossRefGoogle Scholar
  39. Murray HW, Brooks EB, Devecchio JL, Heinzel FP (2003) Immunoenhancement combined with amphotericin B as treatment for experimental visceral leishmaniasis. Antimicrob Agents Chemother 47(8):2513–2517PubMedCrossRefGoogle Scholar
  40. Oliveira CC, Lacerda HG, Martins DR, Barbosa JD, Monteiro GR, Queiroz JW, Sousa JM, Ximenesf MF, Jerônimo SM (2004) Changing epidemiology of American cutaneous leishmaniasis (ACL) in Brazil: a disease of the urban–rural interface. Acta Trop 90(2):155–162PubMedCrossRefGoogle Scholar
  41. Olliaro PL, Bryceson ADM (1993) Practical progress and new drugs for changing patterns of leishmaniasis. Parasitol Today 9:323–328PubMedCrossRefGoogle Scholar
  42. Pal S, Ravindran R, Ali N (2004) Combination therapy using sodium antimony gluconate in stearylamine-bearing liposomes against established and chronic Leishmania donovani infection in BALB/c mice. Antimicrob Agents Chemother 48(9):3591–3593PubMedCrossRefGoogle Scholar
  43. Raht S, Trivellin A, Imbrunito TR, Tomazela DM, Jesus MN, Marzal P, Junior HFA (2003) Tempone, A.G. Antimoniais Empregados no Tratamento da Leishmaniose: Estado de Arte. Quim Nova 26:550–557Google Scholar
  44. Ramos H, Milhaud J, Cohen BE, Bolard J (1990) Enhanced action of anphotericin B on Leishmania mexicana resulting from heat transformation. Antimicrob Agents Chemother 34(8):1584–1589PubMedGoogle Scholar
  45. Ritting MG, Bogdan C (2000) Leishmania host–cell interaction: complexities and alternative views. Parasitol Today 16:292–297CrossRefGoogle Scholar
  46. Roberts W, McMurray W, Rainey P (1998) Characterization of the antimonial antileishmanial agent meglumine antimonate (Glucantime). Antimicrob Agents Chemother 42(5):1076–1082PubMedGoogle Scholar
  47. Rosa MSS, Mendonça-Filho RR, Bizzo HR, Rodrigues IA, Soares RM, Padrón TS, Alviano CS, Lopes AHCS (2003) Antileishmanial activity of a linalool-rich essential oil from Cróton cajucara. Antimicrob Agents Chemother 47(6):1895–1901CrossRefGoogle Scholar
  48. Sereno D, Alegre AM, Silvestre R, Vergnes B, Ouaissi A (2005) In vitro antileishmanial activity of nicotinamide. Antimicrob Agents Chemother 49(2):808–812PubMedCrossRefGoogle Scholar
  49. Shapiro TA, Were JB, Danso K, Nelson DJ, Desjardins RE, Pamplin CL (1991) Pharmacokinetics and metabolism of allopurinol riboside. Clin Pharmacol Ther 49(5):506–514PubMedGoogle Scholar
  50. Silva ES, Pacheco RS, Gontijo CM, Carvalho IR, Brazil RP (2002) Visceral leishmaniasis caused by Leishmania (viannia) braziliensis in a patient infected with human immunodeficiency virus. Rev Inst Med Trop São Paulo 44:145–149PubMedGoogle Scholar
  51. Singh S, Sivakumar R (2004) Challenges and new discoveries in the treatment of leishmaniasis. J Infect Chemother 10(6):307–315PubMedCrossRefGoogle Scholar
  52. Soong L, Duboise SM, Kima P, Mcmahon-Pratt D (1995) Leishmania pifanoi amastigote antigens protect mice against cutaneous leishmaniasis. Infection and Imunnity 63(9):3559–3566Google Scholar
  53. Tempone AG, Silva ACMP, Brandt CA, Martinez FS, Borborema SET, Silveira MAB, Andrade HF Jr (2005) Synthesis and antileishmanial activities of novel 3-substituted quinolones. Antimicrob Agents Chemother 49(3):1076–1080PubMedCrossRefGoogle Scholar
  54. Tiuman TS, Nakamura TU, Cortez DAG, Filho BPD, Diaz JAM, Souza W, Nakamura CV (2005) Antileishmanial activity of parthenolide, a sesquiterpene lactone isolated from Tanacetum parthenium. Antimicrob Agents Chemother 49(1):176–182PubMedCrossRefGoogle Scholar
  55. Weniger B, Robledo S, Arango GJ, Deharo E, Aragon R, Munoz V, Callapa J, Lobstein A, Anton R (2001) Antiprotozoal activities of Colombian plants. J Ethnopharmacol 78(2–3):193–200PubMedCrossRefGoogle Scholar
  56. WHO (2001) Tropical disease research: progress 1999–2000. World Health Organization, GenevaGoogle Scholar
  57. WHO (1990) Tropical disease research progress. AIDS, leishmaniasis dangers of clash highlighted. TDR News. 36:1–11. World Health OrganizationGoogle Scholar
  58. WHO (1991) Tropical disease research progress. Antimonials large-scale failure in Leishmaniasis “alarming”. TDR News. 34:17. World Health OrganizationGoogle Scholar
  59. Yardley V, Khan AA, Martin MB, Slifer TR, Araujo FG, Moreno SNJ, Docampo R, Croft SL, Oldfield E (2002) In vivo activities of farnesyl pyrophosphate synthase inhibitors against Leishmania donovani and Toxoplama gondii. Antimicrob Agents Chemother 46(3):929–931PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Dilvani O. Santos
    • 1
  • Carlos E. R. Coutinho
    • 1
  • Maria F. Madeira
    • 2
  • Carolina G. Bottino
    • 1
  • Rodrigo T. Vieira
    • 1
  • Samara B. Nascimento
    • 1
  • Alice Bernardino
    • 3
  • Saulo C. Bourguignon
    • 1
  • Suzana Corte-Real
    • 4
  • Rosa T. Pinho
    • 4
  • Carlos Rangel Rodrigues
    • 5
  • Helena C. Castro
    • 1
  1. 1.Laboratório de Biopatógenos e Ativação Celular (LaBiopAc), Departamento de Biologia Celular e Molecular, Instituto de BiologiaUniversidade Federal Fluminense (UFF)NiteróiBrazil
  2. 2.Instituto de Pesquisa Clínica Evandro Chagas (IPEC)Fundação Oswaldo Cruz- FIOCRUZManguinhosBrazil
  3. 3.Instituto de Química, UFFNiteróiBrazil
  4. 4.Laboratório de Imunologia ClínicaInstituto Oswaldo CruzManguinhosBrazil
  5. 5.Laboratório de Modelagem Molecular e QSAR (ModMolQSAR), Faculdade de FarmáciaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations