Advertisement

Parasitology Research

, Volume 102, Issue 5, pp 945–950 | Cite as

An extraordinary endocytobiont in Acanthamoeba sp. isolated from a patient with keratitis

  • P. Scheid
  • L. Zöller
  • S. Pressmar
  • G. Richard
  • R. Michel
Original Paper

Abstract

In the present article, the detection and the development of a parasitic endocytobiont within host amoebae (Acanthamoeba sp.) recently isolated from the contact lens and the inflamed eye of a patient with keratitis is presented. An otherwise healthy 55-year-old female patient presented with keratitis in her inflamed left eye. She was a contact lens wearer and had no history of a corneal trauma. Acanthamoebae as well as other smaller free-living amoebae could be detected from the fluid of the contact lens storage cases by culture methods. A successful therapy could be provided consequently. Two of these Acanthamoeba strains showed intracellular aggregating organisms. Within 2 to 3 days, the host amoebae ruptured, and numerous microorganisms were released. We succeeded in detecting the mechanism of infection and intrusion of this organisms by using light and electron microscopy. Infection with this endocytobiont is a suitable model for studying the host–parasite relations while the parasites use their hosts as so-called Trojan horses (see Barker, Lambert, Brown, Infect Immun 61:3503–3510, 1992).

Keywords

Keratitis Cabral Allergic Contact Dermatitis Food Vacuole Acanthamoeba Keratitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We like to thank Dr. B. Hauröder for her help and assistance to obtain the impressive electron microscopical records.

References

  1. Barker J, Lambert PA, Brown MRW (1992) Influence of intra-amoebic and other growth conditions on the surface properties of Legionella pneumophila. Infect Immun 61:3503–3510Google Scholar
  2. Beattie TK, Seal DV et al (2003) Determination of amoebicidal activities of multipurpose contact lens solutions by using a most probable number enumeration technique. J Clin Microbiol 41(7):2992–3000PubMedCrossRefGoogle Scholar
  3. Bottone EJ, Madayag RM, Qureshi MN (1992) Acanthamoeba keratitis: synergy between amebic and bacterial cocontaminants in contact lens care systems as a prelude to infection. J Clin Microbiol 30(9):2447–2450PubMedGoogle Scholar
  4. De Jonckheere JF (1977) Use of an axenic medium for differentiation between pathogenic an non-pathogenic Naegleria fowleri isolates. Appl Environ Microbiol 33:751–757PubMedGoogle Scholar
  5. De Jonckheere JF (1980) Growth characteristics, cytopathic effect in cell culture, and virulence in mice of 36 type strains belonging to 19 different Acanthamoeba spp. Appl Environ Microbiol 39:681–685PubMedGoogle Scholar
  6. De Jonckheere JF, Michel R (1988) Species identification and virulence of Acanthamoeba strains from human nasal mucosa. Parasitol News 74:314–316CrossRefGoogle Scholar
  7. Everett KDE, Bush RM, Anderssen AA (1999) Embedded description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five species, and standards for the identification of organisms. Int J Syst Bacteriol 49:415–440PubMedCrossRefGoogle Scholar
  8. Fritsche TR, Gautom RK, Seyedirashti S, Bergeron DL, Lindquist TD (1993) Occurrence of bacterial endosymbionts in Acanthamoeba spp. isolated from corneal and environmental specimens and contact lenses. J Clin Microbiol 31:1122–1126PubMedGoogle Scholar
  9. Fritsche TR, Horn M, Seyedirashti S, Gautom RK, Schleifer KH, Wagner M (1999) In situ detection of novel bacterial endosymbionts of Acanthamoeba spp. phylogenetically related to members of the order Rickettsiales. Appl Environ Microbiol 65:206–212PubMedGoogle Scholar
  10. Houang E, Lam D, Fan D, Seal D (2001) Microbial keratitis in Hong Kong: relationship to climate, environment and contact-lens disinfection. Trans R Soc Trop Med Hyg 95:361–367PubMedCrossRefGoogle Scholar
  11. Just H-M, Michel R (1984) Infektionsgefährdung durch Bakterien, Pilze und Amöben in Kühl- und Spülwasser zahnärztlicher Einheiten. Dtsch Zahnärtzl Z 39:60–64Google Scholar
  12. Kennedy SM, Devine P et al (1995) Corneal infection associated with Hartmannella vermiformis in contact-lens wearer. Lancet 346:637–638PubMedCrossRefGoogle Scholar
  13. Kirkness CM, Aiken D et al (1993) Vahlkampfiids keratitis simulating Acanthamoeba infection associated with disposable contact lens wear (an overlooked diagnosis). Invest Ophthalmol Vis Sci 334:853Google Scholar
  14. Matias R, Schottelius J, Raddatz CHF, Michel R (1991) Species identification and characterisation of an Acanthamoeba strain from human cornea. Parasitol Res 77:469–474PubMedCrossRefGoogle Scholar
  15. Marciano-Cabral F, Cabral G (2003) Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 16:273–307PubMedCrossRefGoogle Scholar
  16. Michel R, Just H-M (1984) Acanthamoeben, Naeglerien und andere freilebende Amöben in Kühl- und Spülwasser von Zahnbehandlungseinheiten. Zbl Hyg 179:56–72Google Scholar
  17. Michel R, Borneff M (1989) Über die Bedeutung von Amöben und anderen Protozoen in wasserführenden Systemen von Dentaleinheiten. Zbl Bakt Hyg 187:312–323Google Scholar
  18. Michel R, Röhl R, Schneider H (1982) Isolierung von freilebenden Amöben durch Gewinnung von Nasenschleimhautabstrichen bei gesunden Probanden. Zbl Bakt Hyg 176:155–159Google Scholar
  19. Michel R, Schmid EN, Böker T, Hager DG, Müller K-D, Hoffmann R, Seitz HM (2000) Vannella sp. harboring Microsporidia-like organisms isolated from the contact lens and inflamed eye of a female keratitis patient. Parasitol Res 86:514–520PubMedCrossRefGoogle Scholar
  20. Müller K-D, Schmid EN, Michel R (1999) Intracellular bacteria of Acanthamoebae resembling Legionella spp. turned out to be Cytophaga sp. Zbl Bakteriol 189:389–397Google Scholar
  21. Page FC (1988) A new key to freshwater and soil Gymnamoebae with instructions for culture. Freshwater Biological Association, Ambleside, UKGoogle Scholar
  22. Reul M (2004) Entnahme- und Versandtechniken von mikrobiologischem Probenmaterial: Infektionen der Augen und Ohren; Krankenhaushygiene + Infektionsverhütung 26 Heft 2:72–76Google Scholar
  23. Rivera F, Medina F et al (1984) Pathogenic and free-living protozoa cultured from nasopharyngeal and oral regions of dental patients. Environ Res 33:428–440PubMedCrossRefGoogle Scholar
  24. Rohr U, Weber S, Michel R, Selenka F, Wilhelm M (1998) Comparison of free-living amoebae in hot water systems of hospitals with isolates from moist sanitary areas by identifying genera and determining temperature tolerance. Appl Environ Microbiol 64:1822–1824PubMedGoogle Scholar
  25. Rowbotham TJ (1980) Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33:1179–1183PubMedCrossRefGoogle Scholar
  26. Scheid P (2007) Mechanism of intrusion of a microsporidian-like organism into the nucleus of host amoebae (Vannella sp.) isolated from a keratitis patient. Parasitol Res 101:1097–1102PubMedCrossRefGoogle Scholar
  27. Seal DV, Kirkness CM, Bennet HGB, Peterson M, Keratitis Study Group (1999) Acanthamoeba keratitis in Scotland: risk factors for contact lens wearers. Contact Lens Anterior Eye 22:58–68PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • P. Scheid
    • 1
  • L. Zöller
    • 1
  • S. Pressmar
    • 2
  • G. Richard
    • 2
  • R. Michel
    • 1
  1. 1.Laboratory of Medical ParasitologyCentral Institute of the Bundeswehr Medical Service KoblenzKoblenzGermany
  2. 2.Universitätsklinikum Hamburg-EppendorfKlinik und Poliklinik für AugenheilkundeHamburgGermany

Personalised recommendations