Parasitology Research

, Volume 102, Issue 4, pp 635–643 | Cite as

A monoclonal antibody that inhibits Trypanosoma cruzi growth in vitro and its reaction with intracellular triosephosphate isomerase

  • A.A. Cortés-Figueroa
  • A. Pérez-Torres
  • N. Salaiza
  • N. Cabrera
  • A. Escalona-Montaño
  • A. Rondán
  • M. Aguirre-García
  • A. Gómez-Puyou
  • R. Pérez-Montfort
  • I. Becker
Original Paper

Abstract

In parasites of the order Kinetoplastida, such as Trypanosoma cruzi and Trypanosoma brucei, glycolysis is carried out by glycolytic enzymes in glycosomes. One of the glycolytic enzymes is triosephosphate isomerase (TIM), which in T. brucei is localized exclusively in glycosomes, whereas in T. cruzi, the localization of TIM has not been fully ascertained. In the present work, we made a monoclonal antibody (mAb 6-11G) against recombinant T. cruzi TIM (rTcTIM). Incubation of T. cruzi epimastigotes with the mAb inhibited parasite survival. Western blotting showed that the mAb recognized rTcTIM and a 27 kDa band in T. cruzi lysates that corresponded to TcTIM. Sera from patients with Chagas disease recognized rTcTIM and cross-reacted with human recombinant TIM. The cross reactivity between parasite and human TIM possibly contributes to the autoimmune pathogenesis of Chagas disease. Electron microscopy of T. cruzi epimastigotes with the mAb showed that TIM was located within glycosomes, in the cytoplasm, the nucleus, and the kinetoplast. Collectively, the data shed new light on T. cruzi TIM and opens perspectives for drug design.

References

  1. Aguirre-García MM, Cerbon J, Talamás-Rohana P (2000) Purification and properties of an acid phosphatase from Entamoeba histolytica HM-1 IMSS. Int J Parasitol 30:585–591PubMedCrossRefGoogle Scholar
  2. Aman RA, Wang CC (1986) An improved purification of glycosomes from the procyclic trypomastigotes of Trypanosoma brucei. Mol Biochem Parasitol 21:211–220PubMedCrossRefGoogle Scholar
  3. Berriman M, Ghedin E, Fowler CH, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Böhme U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B, Alsmark UCM, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks K, Carrington M, Cherevach I, Chillingworth TJ, Churcher C, Clark LN, Corton CH, Cronin A, Davies RM, Doggett J, Djikeng A, Feldblyum T, Field MC, Fraser A, Goodhead I, Hance Z, Harper D, Harris BR, Hauser H, Hostetler J, Ivens AL, Jagels K, Johnson D, Johnson J, Jones K, Kerhornou AX, Koo H, Larke N, Landfear S, Larkin C, Leech V, Line A, Lord A, Macleod A, Mooney PJ, Moule S, Martin DMA, Morgan GW, Mungal LK, Norbertczak H, Ormond D, Pai G, Peacock CS, Peterson J, Quail MA, Rabbinowitsch E, Rajandream MA, Reiter C, Salzberg SL, Sanders M, Schobel S, Sharp S, Simmonds M, Simpson AJ, Tallon L, Turner CMR, Tait A, Tivey AR, Aken SV, Walker D, Wanless D, Wang S, White B, White O, Whitehead S, Woodward J, Wortman J, Adams MD, Embley TM, Gull K, Ullu E, Barry JD, Fairlamb AH, Opperdoes F, Barrell BG, Donelson JE, Hall N, Fraser CM, Melville SE, El-sayed NM (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309:416–422PubMedCrossRefGoogle Scholar
  4. Bourgignon SC, Meirelles MN, Pacheco RS, Giovanni DS (1998) Purification and partial characterization of Trypanosoma cruzi triosephosphate isomerase. Mem Inst Oswaldo Cruz 93:219–224Google Scholar
  5. Bozzola JJ, Russell LD (1998) Electron microscopy, 2nd edn. Jones and Bartlett Publishers, Sudbury, MSGoogle Scholar
  6. El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, Da silveira JF, De jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, Mc Culloch R, McKenna A, Mizuno Y, Mottram JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M, Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Aken AV, Vogt C, Ward PN, Wickstead B, Wortman J, White O, Fraser CM, Stuart KD, Andersson B (2005) The genome sequence of Trypanosoma cruzi, etiological agent of Chagas disease. Science 309:409–415PubMedCrossRefGoogle Scholar
  7. Hannaert V, Michels PA (1994) Structure, function and biogenesis of glycosomes in kinetoplastida. J Bioenerg Biomembr 26:205–212PubMedCrossRefGoogle Scholar
  8. Harn DA, Gu W, Oligino LD, Mitsuyama M, Gebremichael A, Richter D (1991) Protective monoclonal antibody specifically recognizes and alters the catalytic activity of Schistosome triose-phosphate isomerase. J Immunol 148:562–567Google Scholar
  9. Hart DT, Opperdoes FR (1984) The occurrence of glycosomes (microbodies) in the promastigote stage of four major Leishmania species. Mol Biochem Parasitol 13:159–172PubMedCrossRefGoogle Scholar
  10. Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Rajandream MA, Adlem E, Aert R, Anupama A, Apostolou Z, Attipoe P, Bason N, Bauser C, Beck A, Beverley SM, Bianchettin G, Borzym K, Bothe G, Bruschi CV, Collins M, Cadag E, Ciarloni L, Clayton C, Coulson RMR, Cronin A, Cruz AK, Davies RM, De Gaudenzi J, Dobson DE, Duesterhoeft A, Fazelina G, Fosker N, Frasch CA, Fraser A, Fuchs M, Gabel C, Goble A, Goffeau A, Harris D, Hertz-Fowler C, Hilbert H, Horn D, Huang Y, Klages S, Knights A, Kube M, Larke N, Litvin L, Lord A, Louie T, Marra M, Masuy D, Matthews K, Michaeli S, Mottram JC, Müller-Auer S, Munden H, Nelson S, Norbertczak H, Oliver K, O’Neil S, Pentony M, Pohl TM, Price C, Purnelle B, Quail MA, Rabbinowitsch E, Reinhardt R, Rieger M, Rinta J, Robben J, Robertson L, Ruiz JC, Rutter S, Saunders D, Schäfer M, Schein J, Schwartz DC, Seeger K, Seyler A, Sharp S, Shin H, Sivam D, Squares R, Squares S, Tosato V, Vogt C, Volckaert G, Wambutt R, Warren T, Wedler H, Woodward J, Zhou S, Zimmermann W, Smith DF, Blackwell JM, Stuart KD, Barrell B, Myler PJ (2005) The genome of the kinetoplastid parasite Leishmania major. Science 309:436–442PubMedCrossRefGoogle Scholar
  11. Jiménez L, Fernández-Velasco DA, Willms K, Landa A (2003) A comparative study of biochemical and immunological properties of triosephosphate isomerase from Taenia solium and Sus scrofa. J Parasitol 89:209–214PubMedCrossRefGoogle Scholar
  12. Kierszenbaum F (2005) Where do we stand on the autoimmune hypothesis of Chagas disease? Trends Parasitol 21:513–516PubMedCrossRefGoogle Scholar
  13. Lanham SM (1968) Separation of trypanosomes from blood of infected rats and mice by anion-exchangers. Nature 218:1273–1274PubMedCrossRefGoogle Scholar
  14. Nozaki T, Engel JC, Dvorak JA (1996) Cellular and molecular biological analysis of nifurtimox resistance in Trypanosoma cruzi. Am J Trop Med. Hyg 55:111–117PubMedGoogle Scholar
  15. Opperdoes FR (1987) Compartmentation of carbohydrate metabolism in trypanosomes. Ann Rev Microbiol 41:127–151CrossRefGoogle Scholar
  16. Opperdoes FR, Borst P (1977) Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: The glycosome. FEBS Lett 80:360–364PubMedCrossRefGoogle Scholar
  17. Opperdoes FR, Michels PA (1993) The glycosomes of the Kinetoplastida. Biochemie 75:231–234CrossRefGoogle Scholar
  18. Opperdoes FR, Baudhuin P, Coppens I, De Roe C, Edwards SW, Wiejers PJ, Misset O (1984) Purification, morphometric analysis, and characterization of the glycosomes (microbodies) of the protozoan hemoflagellate Trypanosoma brucei. J Cell Biol 98:1178–1184PubMedCrossRefGoogle Scholar
  19. Ostoa-Saloma P, Garza-Ramos G, Ramírez J, Becker I, Berzunza M, Landa A, Gómez- Puyou A, Pérez-Montfort R (1997) Cloning, expression, purification and characterization of triosephosphate isomerase from Trypanosoma cruzi. Eur J Biochem 244:700–705PubMedCrossRefGoogle Scholar
  20. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  21. Taylor MB, Gutteridge WE (1987) Trypanosoma cruzi: subcellular distribution of glycolytic and some related enzymes of epimastigotes. Exp Parasitol 63:84–97PubMedCrossRefGoogle Scholar
  22. Taylor MB, Berghausen H, Heyworth P, Messenger N, Rees LJ, Gutteridge WE (1980) Subcellular localization of some glycolytic enzymes in parasitic flagellated protozoa. Int J Biochem 11:117–120PubMedCrossRefGoogle Scholar
  23. Urbina JA, Payares G, Molina J, Sanoja C, Liendo A, Lazardi K, Piras MM, Piras R, Perez N, Wincker P (1996) Cure of short- and long-term experimental Chagas disease using D0870. Science 273:969–971PubMedCrossRefGoogle Scholar
  24. Visser N, Opperdoes FR (1980) Glycolysis in Trypanosoma brucei. Eur J Biochem 103:623–632PubMedCrossRefGoogle Scholar
  25. WHO (1991) Expert Committee on Control of Chagas Disease. WHO Techn. Rep. Ser. No. 811. GenevaGoogle Scholar
  26. Zimmermann S, Becker-Pérez I, Beuscher HU, Kroczek RA, Röllinghoff M, Solbach W (1994) Leishmania major parasites share an epitope with the murine CD3-T complex. Eur J Immunol 24:503–507PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • A.A. Cortés-Figueroa
    • 1
    • 2
  • A. Pérez-Torres
    • 3
  • N. Salaiza
    • 1
  • N. Cabrera
    • 4
  • A. Escalona-Montaño
    • 1
  • A. Rondán
    • 3
  • M. Aguirre-García
    • 1
  • A. Gómez-Puyou
    • 4
  • R. Pérez-Montfort
    • 4
  • I. Becker
    • 1
  1. 1.Departamento de Medicina Experimental, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMéxico D.F.México
  2. 2.Investigación Biomédica, Centro Nacional 20 de NoviembreISSSTEMéxico D.F.México
  3. 3.Departamento de Biología Celular y Tisular, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMéxico D.F.México
  4. 4.Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMéxico D.F.México

Personalised recommendations