Parasitology Research

, Volume 102, Issue 4, pp 613–619 | Cite as

The presence of Mycoplasma hominis in isolates of Trichomonas vaginalis impacts significantly on DNA fingerprinting results

  • J. C. Xiao
  • L. F. Xie
  • L. Zhao
  • S. L. Fang
  • Z. R. Lun
Original Paper


The genetic characterization of Trichomonas vaginalis (Protista: Trichomonadidae), the causative agent of trichomoniasis in humans, is central to understanding the epidemiology, treatment, drug resistance, and virulence as well as the diagnosis and control of this parasite. Various molecular approaches, including DNA fingerprinting, have been employed for this purpose, and random amplification of polymorphic DNA (RAPD) continues to be utilized. However, little attention has been paid to the fact that some T. vaginalis populations can harbor symbiotic Mycoplasma hominis and/or other agents, which could cause artifacts in the RAPD results. In the present study, we demonstrate clearly that the presence of M. hominis from T. vaginalis isolates impacts significantly on RAPD results and on the subsequent analyses and interpretation of data sets. Moreover, symbiotic M. hominis displays an isolate-to-isolate variability in RAPD profile before elimination, suggesting a variability of M. hominis infection.



We thank Drs. Robin B. Gasser and Christine L. Miller for their critical review of the manuscript. This work was supported, in part, by grants from the Natural Science Foundation of Guangdong Province (no. 04105510), the Ministry of National Education (IRT0447) and the Sun Yat-Sen (Zhongshan) University (985 Project, no. 3253280) to ZRL.

Supplementary material

436_2007_796_MOESM1_ESM.doc (34 kb)
Table 2Similarity coefficients between Trichomas vaginalis isolates before doxycycline treatment using four different primers (DOC 34 kb)
436_2007_796_MOESM2_ESM.doc (34 kb)
Table 3Similarity coefficients between Trichomas vaginalis isolates before doxycycline treatment using four different primers (DOC 34 kb)


  1. Blanchard A, Yanez A, Dybvig K, Watson HL, Griffiths G, Cassell GH (1993) Evaluation of intraspecies genetic variation within the 16S rRNA gene of Mycoplasma hominis and detection by polymerase chain reaction. J Clin Microbiol 31:1358–1361PubMedGoogle Scholar
  2. Dessi D, Delogu G, Emonte E, Catania MR, Fiori PL, Rappelli P (2005) Long-term survival and intracellular replication of Mycoplasma hominis in Trichomonas vaginalis cells: potential role of the protozoon in transmitting bacterial infection. Infect Immun 73:1180–1186PubMedCrossRefGoogle Scholar
  3. Diamond LS (1957) The establishment of various trichomonas of animals and man in axenic cultures. J Parasitol 43:488–490PubMedCrossRefGoogle Scholar
  4. Fang SL, Xiao JC, Lun ZR (2006) Detection of Mycoplasma hominis in Trichomonas vaginalis by PCR. Chin J Parasitol Parasit Dis 24:144–145Google Scholar
  5. Fredricks DN, Fiedler TL, Marrazzo JM (2005) Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med 353:1899–1911PubMedCrossRefGoogle Scholar
  6. Germain M, Krohn MA, Hillier SL, Eschenbach DA (1994) Genital flora in pregnancy and its association with intrauterine growth retardation. J Clin Microbiol 32:2162–2168PubMedGoogle Scholar
  7. Hampl V, Pavlicek A, Flegr J (2001a) Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with the freeware program FreeTree: application to trichomonad parasites. Int J Syst Evol Microbiol 51:731–735PubMedGoogle Scholar
  8. Hampl V, Vaňáčová Š, Kulda J, Flegr J (2001b) Concordance between genetic relatedness and phenotypic similarities of Trichomonas vaginalis strains. BMC Evol Biol 1:11PubMedCrossRefGoogle Scholar
  9. Heine P, McGregor JA (1993) Trichomonas vaginalis: a reemerging pathogen. Clin Obstet Gynecol 36:137–144PubMedCrossRefGoogle Scholar
  10. Ivey MH (1961) Growth characteristics of clones of Trichomonas vaginalis in solid medium. J Parasitol 47:539–544PubMedCrossRefGoogle Scholar
  11. Jacobs B, Mayaud P, Changalucha J, Todd J, Ka-Gina G, Grosskurth H, Berege ZA (1997) Sexual transmission of hepatitis B in Mwanza, Tanzania. Sex Transm Dis 24:121–126PubMedCrossRefGoogle Scholar
  12. Kaul P, Gupta I, Sehgal R, Malla N (2004) Trichomonas vaginalis: random amplified polymorphic DNA analysis of isolates from symptomatic and asymptomatic women in India. Parasitol Int 53:255–262PubMedCrossRefGoogle Scholar
  13. Koch A, Bilina A, Teodorowicz L, Stary A (1997) Mycoplasma hominis and Ureaplasma urealyticum in patients with sexually transmitted diseases. Wien Klin Wochenschr 109:584–589PubMedGoogle Scholar
  14. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  15. Laga M, Manoka A, Kivuvu M, Malele B, Tuliza M, Nzila N, Goeman J, Behets F, Batter V, Alary M et al (1993) Non-ulcerative sexually transmitted diseases as risk factors for HIV-1 transmission in women: results from a cohort study. AIDS 7:95–102PubMedCrossRefGoogle Scholar
  16. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273PubMedCrossRefGoogle Scholar
  17. Rappelli P, Addis MF, Carta F, Fiori PL (1998) Mycoplasma hominis parasitism of Trichomonas vaginalis. Lancet 352:1286PubMedCrossRefGoogle Scholar
  18. Rappelli P, Carta F, Delogu G, Addis MF, Dessi D, Cappuccinelli P, Fiori PL (2001) Mycoplasma hominis and Trichomonas vaginalis symbiosis: multiplicity of infection and transmissibility of M. hominis to human cells. Arch Microbiol 175:70–74PubMedCrossRefGoogle Scholar
  19. Rojas L, Fraga J, Sariego I (2004) Genetic variability between Trichomonas vaginalis isolates and correlation with clinical presentation. Infect Genet Evol 4:53–58PubMedCrossRefGoogle Scholar
  20. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstruction of phylogenetics trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  21. Salvaggio A, Conti M, Albano A, Pianetti A, Muggiasca ML, Re M, Salvaggio L (1993) Sexual transmission of hepatitis C virus and HIV-1 infection in female intravenous drug users. Eur J Epidemiol 9:279–284PubMedCrossRefGoogle Scholar
  22. Sambrook J, Russell David W (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbour, New YorkGoogle Scholar
  23. Samra Z, Rosenberg S, Soffer Y (2002) In vitro susceptibility of Mycoplasma hominis clinical isolates to tetracyclines, quinolones and macrolides. Diagn Microbiol Infect Dis 44:359–361PubMedCrossRefGoogle Scholar
  24. Schwebke JR, Burgess D (2004) Trichomoniasis. Clin Microbiol Rev. 17:794–803PubMedCrossRefGoogle Scholar
  25. Snipes LJ, Gamard PM, Narcisi EM, Beard CB, Lehmann T, Secor WE (2000) Molecular epidemiology of metronidazole resistance in a population of Trichomonas vaginalis clinical isolates. J Clin Microbiol 38:3004–3009PubMedGoogle Scholar
  26. Stellrecht KA, Woron AM, Mishrik NG, Venezia RA (2004) Comparison of multiplex PCR assay with culture for detection of genital mycoplasmas. J Clin Microbiol 42:1528–1533PubMedCrossRefGoogle Scholar
  27. Vanacova S, Tachezy J, Kulda J, Flegr J (1997) Genetic characterization of trichomonad species and strains by PCR fingerprinting. J Eukaryot Microbiol 44:545–552PubMedCrossRefGoogle Scholar
  28. van Belkum A, van der Schee C, van der Meijden WI, Verbrugh HA, Sluiters HJ (2001) A clinical study on the association of Trichomonas vaginalis and Mycoplasma hominis infections in women attending a sexually transmitted disease (STD) outpatient clinic. FEMS Immunol Med Microbiol 32:27–32PubMedCrossRefGoogle Scholar
  29. Waites KB, Crabb DM, Duffy LB (2003) Comparative in vitro susceptibilities and bactericidal activities of investigational fluoroquinolone ABT-492 and other antimicrobial agents against human Mycoplasmas and Ureaplasmas. Antimicrob Agents Chemother 47:3973–3975PubMedCrossRefGoogle Scholar
  30. Wang AL, Wang CC (1985) A linear double-stranded RNA in Trichomonas vaginalis. J Biol Chem 260:3697–3702PubMedGoogle Scholar
  31. Wang A, Wang CC, Alderete JF (1987) Trichomonas vaginalis phenotypic variation occurs only among trichomonas infected with the double-stranded RNA virus. J Exp Med 166:142–150PubMedCrossRefGoogle Scholar
  32. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218PubMedCrossRefGoogle Scholar
  33. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535PubMedCrossRefGoogle Scholar
  34. World Health Organization (2001) Trichomoniasis. In: Global prevalence and incidence of selected curable sexually transmitted infections: overview and estimates. Geneva, SwitzerlandGoogle Scholar
  35. Xiao JC, Xie LF, Fang SL, Gao MY, Zhu Y, Song LY, Zhong HM, Lun ZR (2006) Symbiosis of Mycoplasma hominis in Trichomonas vaginalis may link metronidazole resistance in vitro. Parasitol Res 100:123–130PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • J. C. Xiao
    • 1
    • 2
  • L. F. Xie
    • 1
  • L. Zhao
    • 1
  • S. L. Fang
    • 1
  • Z. R. Lun
    • 1
  1. 1.Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life SciencesSun Yat-Sen (Zhongshan) UniversityGuangzhouPeople’s Republic of China
  2. 2.Stanley Division of Developmental Neurovirology, Department of PediatricsJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations