Parasitology Research

, Volume 101, Issue 2, pp 443–452 | Cite as

Antigiardial activity of Ocimum basilicum essential oil

  • Igor de Almeida
  • Daniela Sales Alviano
  • Danielle Pereira Vieira
  • Péricles Barreto Alves
  • Arie Fitzgerald Blank
  • Angela Hampshire C. S. Lopes
  • Celuta Sales Alviano
  • Maria do Socorro S. Rosa
Original Paper

Abstract

In this study, we investigated the effects of Ocimum basilicum essential oil on Giardia lamblia and on the modulation of the interaction of these parasites by peritoneal mouse macrophage. The essential oil (2 mg/ml) and its purified substances demonstrated antigiardial activity. Linalool (300 μg/ml), however, was able to kill 100% parasites after 1 h of incubation, which demonstrates its high antigiardial potential. Pretreatment of peritoneal mouse macrophages with 2 mg/ml essential oil dilution reduced in 79% the association index between these macrophages and G. lamblia, with a concomitant increase by 153% on nitric oxide production by the G. lamblia-ingested macrophages. The protein profiles and proteolitic activity of these parasite trophozoites, previously treated or not with 2 mg/ml essential oil or with the purified fractions, were also determined. After 1 and 2 h of incubation, proteins of lysates and culture supernatants revealed significant differences in bands patterns when compared to controls. Besides, the proteolitic activity, mainly of cysteine proteases, was clearly inhibited by the essential oil (2 mg/ml) and the purified linalool (300 μg/ml). These results suggest that, with G. lamblia, the essential oil from O. basilicum and its purified compounds, specially linalool, have a potent antimicrobial activity.

Notes

Acknowledgments

We thank Ms. Camilla M. Fortunato and Ms. Simone S. dos Santos for technical support. This work was supported by Fundação de Amparo a Pesquisa no Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Universitária José Bonifácio (FUJB), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

References

  1. Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol 14:447–475CrossRefGoogle Scholar
  2. Adams RP (1995) Identification of essential oil components by gas chromatograpy/mass spectroscopy. Allured Publishing Corporation, Illinois, p 469Google Scholar
  3. Barakiewicz J, Dosch H M, Cohen A (1988) Extracellular nucleotide catabolism in human B and T lynfocytes: the source of the adenosine production. J Biol Chem 263:7094–7098Google Scholar
  4. Charles C, Simon JE (1992) A new geraniol chemothype of Ocimim gratissimum L. J Essent Oil Res 4:231–234Google Scholar
  5. Conner DE, Beuchat LR (1984a) Sensitivity of heat-stressed yeast to essential oils of plants. Appl Environ Microbiol 47:229–233PubMedGoogle Scholar
  6. Conner DE, Beuchat LR (1984b) Effects of essential oils from plants on growth of food spoilage yeast. J Food Sci 49:429–434CrossRefGoogle Scholar
  7. David J, Soares M, Satoskar A, Brombacher F, Shoemaker C, Titus R, Bozza M (1997) Immunomodulatory properties of maxadilan, a peptide derived from sand fly saliva. Acta Parasitol Turc 21:174Google Scholar
  8. Davidson RA (2003) Treatment of giardiasis: the North American perspective. In: Meyer EA (ed) Human parasitic diseases, Giardiasis. Elsevier, Amsterdam, 1990, pp 325–334Google Scholar
  9. Eckmann L (2003) Mucosal defences against Giardia. Parasite Immunol 25:259–270PubMedCrossRefGoogle Scholar
  10. Eckmann L, Laurent F, Langford TD, Hetsko ML, Smith JR, Kagnoff MF, Gillin FD (2000) Nitric oxide production by human epithelial intestinal cells and competition for arginine as potential determinants of host defense against the lumen-dwelling pathogen Giardia lamblia. J Immunol 164:1478–1487PubMedGoogle Scholar
  11. Esquenazi D, Wigg MD, Miranda MMFS, Rodrigues HM, Tostes JBF, Rozental S, Silva AJR, Alviano CS (2002) Antimicrobial and antiviral activities of poliphenolics from Cocos nucifera Linn. (Palmae). Res Microbiol 153:647–652PubMedCrossRefGoogle Scholar
  12. Flanagan PA (1992) Giardia—diagnosis, clinical course and epidemiology. A review. Epidemiol Infect 109:1–22PubMedGoogle Scholar
  13. Fraser D, Bilenko N, Deckelbaum RJ, Dagan R, el-On J, Naggan L (2000) Giardia lamblia carriage in Israeli Bedouin infants: risks factors and consequences. Clin Infect Dis 30:419–424PubMedCrossRefGoogle Scholar
  14. Friedman GD (1980) Cancer after metronidazole. N Engl J Med 302:519PubMedCrossRefGoogle Scholar
  15. Fung DYC, Taylor S, Kahan J (1977) Effects of butylated hydroxyanisole (BHA) and butylated hydroxitoluene (BHT) on growth and aflatoxin production of Aspergillus flavus. J Food Safety 1:39–51CrossRefGoogle Scholar
  16. Gantt KR, Goldman TL, McCornick ML, Miller MA, Jeronimo SMB, Nascimento ET, Britigan BE, Wilson ME (2001) Oxidative responses of human and murine macrophages during ohagocytosis of Leishmania chagasi. J Immunol 167:893–901PubMedGoogle Scholar
  17. Green SJ, Meltzer MS, Hibbs JB, Nacy CA (1990) Activated macrophages destroy intracellular Leishmania major amastigotes by l-arginine-dependent killing mechanism. J Immunol 144:278–283PubMedGoogle Scholar
  18. Guimarães S, Sogayar MITL, Franco MF (2003) Protease activity in Giárdia duodenalis trophozoites of axenic strains isolated from symptomatic and asymptomatic patients. Mem Inst Oswaldo Cruz 98:77–81PubMedGoogle Scholar
  19. Harris JC, Plummer S, Turner MP, Lloyd D (2000) The microaerophilic flagellate Giardia intestinalis: Allium sativum (garlic) is an effective antigiardial. Microbiol 146:3119–3127Google Scholar
  20. Hill DR, Pearson RD (1987) Ingestion of Giardia lamblia trophozoites by human mononuclear phagocytes. Infect Immun 55:3155–3161PubMedGoogle Scholar
  21. Hill DR, Pohl R (1990) Ingestion of Giardia lamblia trophozoites by murine Payer’s patch macrophages. Infect Immun 58:3202–3207PubMedGoogle Scholar
  22. Ignácio SRN, Ferreira JLP, Almeida MB, Kubelka CF (2001) Nityric oxide production by murine macrophages in vitro and in vivo treated with Phyllanthus tenellus extracts. J Ethnopharmacol 74:181–187PubMedCrossRefGoogle Scholar
  23. Koga T, Hirota N, Takumi K (1999) Bactericidal activities of essential oils of basil and sage against a range of bacteria and the effect of these essential oils on Vibrio parahaemolyticus. Microbiol Res 154:267–273PubMedGoogle Scholar
  24. Labra M, Miele M, Ledda B, Grassi F, Mazzei M, Sala F (2004) Morphological characterization, essential oil composition and DNA genotyping of Ocimum basilicum L. cultivars. Plant Sci 167:725–731CrossRefGoogle Scholar
  25. Laemmli UK (1970) Cleavage of structural protein during the assembly of the bacteriophage T4. Nature 277:680–685CrossRefGoogle Scholar
  26. Lee SJ, Umano K, Shibamoto T, Lee KG (2005) Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem 91:131–137CrossRefGoogle Scholar
  27. Lopes AHC, Dutra SPML, Rodrigues CO, Soares MJ, Angluster J, Cordeiro RSB (1997) Effect of platelet-activating factor on the process of cellular differentiation of Herpetomonas muscarum muscarum. J Eukaryot Microbiol 44:321–325PubMedCrossRefGoogle Scholar
  28. Lowry OH, Rozebrough NJ, Farr AL, Randall RJ (1959) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  29. Martins AP, Salgueiro LR, Vila R, Tomi F, Canigueral S, Casanova J, Proenca da Cunha A, Adzet T (1999) Composition of the essential oils of O. canum, O. gratissimum and O. minimum. Planta Med 65:187–189PubMedCrossRefGoogle Scholar
  30. Mendonça-Filho RR, Rodrigues IA, Alviano DS, Santos ALS, Soares RMA, Alviano CS, Lopes AHCS, Rosa MSS (2004) Leishmanicidal activity of poliphenolic-rich essential extract from husk fiber of Cocos nucifera Linn. (Palmae). Res Microbiol 155:136–143PubMedCrossRefGoogle Scholar
  31. Miele M, Pondero R, Ciarallo G, Mazzei M (2001) Methyl–eugenol in Ocimum basilicum L. cv Genovese gigante. J Agric Food Chem 49:517–521PubMedCrossRefGoogle Scholar
  32. Nash TE, Herrington DA, Losonsky GA, Levine MM (1987) Experimental human infections with Giardia lamblia. J Infect Dis 156:974–984PubMedGoogle Scholar
  33. Ohashi ST, Rosa LS, Santana JA, Green CL (1997) Brazilian rosewood oil: sustainable production and oil quality management. Perf Flav 22:1–5Google Scholar
  34. Owen RL, Allen CL, Stevens DP (1981) Phagocytosis of Giardia muris by macrophages in Peyer’s patch epithelium in mice. Infect Immun 33:591–601PubMedGoogle Scholar
  35. Prozesky EA, Meyer JJM, Louw AI (2001) In vitro antiplasmodial activity and cytotoxity of sethonobotanically selected South African plants. J Ethnopharmacol 76:239–245PubMedCrossRefGoogle Scholar
  36. Roberts-Thomson IC, Stevens DP, Mahmoud AAF, Warren KS (1976) Acquired resistance to infection in an animal model of giardiasis. J Immunol 117:2036–2037PubMedGoogle Scholar
  37. Simon JE, Morales MR, Phippen WB, Vieira RF, Hao Z (1999) A source of aroma compounds and a popular culinary and ornamental herb In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press Alexandria, VA, pp 499–505Google Scholar
  38. Van Den Dool H, Kratz PDJA (1963) Generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. J Chrom 11:463–471CrossRefGoogle Scholar
  39. Werker E, Putievsky E, Ravid U, Dudai N, Katzir I (1993) Glandular hairs and essential oil in developing leaves of Ocimim basilicum L. (Laminaceae). Ann Bot 71:43–50CrossRefGoogle Scholar
  40. WHO The World Health Report (2002) Fighting disease fostering development. World Health Organization, GenevaGoogle Scholar
  41. Wray W, Boulikas T, Wray VP, Kancol JR (1981) Silver staining of proteins in polyacrylamide gels. Anal Biochem 118:197–203PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Igor de Almeida
    • 1
    • 2
  • Daniela Sales Alviano
    • 1
  • Danielle Pereira Vieira
    • 1
  • Péricles Barreto Alves
    • 3
  • Arie Fitzgerald Blank
    • 4
  • Angela Hampshire C. S. Lopes
    • 1
  • Celuta Sales Alviano
    • 1
  • Maria do Socorro S. Rosa
    • 1
  1. 1.Instituto de Microbiologia Prof. Paulo de Góes, Centro de Ciências da SaúdeUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto de Química, Centro de TecnologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Departamento de QuímicaUniversidade Federal de Sergipe (UFS)São CristóvãoBrazil
  4. 4.Departamento de Engenharia AgronômicaUniversidade Federal de Sergipe (UFS)São CristóvãoBrazil

Personalised recommendations