Parasitology Research

, 101:233

Mitochondrial genomes of the human broad tapeworms Diphyllobothrium latum and Diphyllobothrium nihonkaiense (Cestoda: Diphyllobothriidae)

  • Minoru Nakao
  • Davaajav Abmed
  • Hiroshi Yamasaki
  • Akira Ito
Short Communication


Mitochondrial DNA (mtDNA) sequences of the human broad tapeworms Diphyllobothrium latum and Diphyllobothrium nihonkaiense have been totally determined. Both of them are closed circular molecules (total length, 13,720 bp in D. latum and 13,747 bp in D. nihonkaiense) containing genes for 12 proteins, 22 transfer RNAs, and two ribosomal RNAs. All the genes are coded on T-rich strand. The gene order of Diphyllobothrium mtDNAs is completely identical with that of Taenia and Echinococcus mtDNAs. The overall A + T contents of the genomes are 68.3% in D. latum and 67.8% in D. nihonkaiense. The pairwise divergence values of nucleotide sequences between these tapeworms ranged from 0.069 to 0.152 in protein-coding genes, demonstrating that D. nihonkaiense is a distinct species. The sequences determined in this study may provide useful marker systems for diagnostic, epidemiological, and phylogeographical studies of human diphyllobothriasis.


  1. Dick TA, Nelson PA, Choudhury A (2001) Diphyllobothriasis: update on human cases, foci, patterns and sources of human infections and future considerations. Southeast Asian J Trop Med Public Health 32(Suppl 2):59–76PubMedGoogle Scholar
  2. Dupouy-Camet J, Peduzzi R (2004) Current situation of human diphyllobothriasis in Europe. Euro Surveill 9:31–35PubMedGoogle Scholar
  3. Fukumoto S, Yazaki S, Kamo H, Yamane Y, Tsuji M (1988) Distinction between Diphyllobothrium nihonkaiense and Diphyllobothrium latum by immunoelectrophoresis. Jpn J Parasitol 37:91–95Google Scholar
  4. Fukumoto S, Yazaki S, Maejima J, Tsuboi T, Hirai K (1990) Soluble protein profiles and isozyme patterns of Diphyllobothrium pacificum by isoelectric focusing: comparison with those of related diphyllobothriid species. Yonago Acta Med 33:61–70Google Scholar
  5. Hoberg EP, Alkire NL, de Queiroz A, Jones A (2001) Out of Africa: origins of the Taenia tapeworms in humans. Proc Biol Sci 268:781–787PubMedCrossRefGoogle Scholar
  6. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  7. Kokaze A, Miyadera H, Kita K, Machinami R, Noya O, Alarcon de Noya B, Okamoto M, Horii T, Kojima S (1997) Phylogenetic identification of Sparganum proliferum as a pseudophyllidean cestode. Parasitol Int 46:271–279CrossRefGoogle Scholar
  8. Le TH, Blair D, McManus DP (2002) Mitochondrial genomes of parasitic flatworms. Trends Parasitol 18:206–213PubMedCrossRefGoogle Scholar
  9. Matsuura T, Bylund G, Sugane K (1992) Comparison of restriction fragment length polymorphisms of ribosomal DNA between Diphyllobothrium nihonkaiense and D. latum. J Helminthol 66:261–266PubMedCrossRefGoogle Scholar
  10. Miyadera H, Kokaze A, Kuramochi T, Kita K, Machinami R, Noya O, Alarcon de Noya B, Okamoto M, Kojima S (2001) Phylogenetic identification of Sparganum proliferum as a pseudophyllidean cestode by the sequence analyses on mitochondrial COI and nuclear sdhB genes. Parasitol Int 50:93–104PubMedCrossRefGoogle Scholar
  11. Nakao M, Sako Y, Ito A (2003) The mitochondrial genome of the tapeworm Taenia solium: a finding of the abbreviated stop codon U. J Parasitol 89:633–635PubMedCrossRefGoogle Scholar
  12. Nakao M, Sako Y, Yokoyama N, Fukunaga M, Ito A (2000) Mitochondrial genetic code in cestodes. Mol Biochem Parasitol 111:415–424PubMedCrossRefGoogle Scholar
  13. Nakao M, Yokoyama N, Sako Y, Fukunaga M, Ito A (2002) The complete mitochondrial DNA sequence of the cestode Echinococcus multilocularis (Cyclophyllidea: Taeniidae). Mitochondrion 1:497–509PubMedCrossRefGoogle Scholar
  14. Rausch R (1954) Studies on the helminth fauna of Alaska. XXI. Taxonomy, morphological variation, and ecology of Diphyllobothrium ursi n. sp. provis. on Kodiak Island. J Parasitol 40:540–563PubMedCrossRefGoogle Scholar
  15. Telford MJ, Herniou EA, Russell RB, Littlewood DT (2000) Changes in mitochondrial genetic codes as phylogenetic characters: two examples from the flatworms. Proc Natl Acad Sci USA 97:11359–11364PubMedCrossRefGoogle Scholar
  16. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  17. von Nickisch-Rosenegk M, Brown WM, Boore JL (2001) Complete sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: gene arrangements indicate that platyhelminths are eutrochozoans. Mol Biol Evol 18:721–730Google Scholar
  18. Yamane Y, Kamo H, Bylund G, Wikgren BJ (1986) Diphyllobothrium nihonkaiense sp. nov. (Cestoda: Diphyllobothriidae)—revised identification of Japanese broad tapeworms. Shimane J Med Sci 10:29–48Google Scholar
  19. Yera H, Estran C, Delaunay P, Gari-Toussaint M, Dupouy-Camet J, Marty P (2006) Putative Diphyllobothrium nihonkaiense acquired from a Pacific salmon (Oncorhynchus keta) eaten in France; genomic identification and case report. Parasitol Int 55:45–49PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Minoru Nakao
    • 1
  • Davaajav Abmed
    • 2
  • Hiroshi Yamasaki
    • 1
  • Akira Ito
    • 1
  1. 1.Department of ParasitologyAsahikawa Medical CollegeAsahikawaJapan
  2. 2.Laboratory of ParasitologyNational Research Center for Infectious DiseasesUlaanbaatarMongolia

Personalised recommendations