Parasitology Research

, Volume 100, Issue 6, pp 1341–1350 | Cite as

Nitric oxide contributes to host resistance against experimental Taenia crassiceps cysticercosis

  • Javier Alonso-Trujillo
  • Irma Rivera-Montoya
  • Miriam Rodríguez-Sosa
  • Luis I. Terrazas
Original Paper


The immune mechanisms that underlie resistance and susceptibility to cysticercosis are not completely understood. In this paper, using susceptible BALB/c mice and resistant STAT6−/− BALB/c mice, we have analyzed the role of nitric oxide (NO) in determining the outcome of murine cysticercosis caused by the cestode Taenia crassiceps. After T. crassiceps infection, wild-type BALB/c mice developed a strong Th2-like response, produced high levels of IgG1, IgE, IL-5, IL-4, and discrete levels of NO, and remained susceptible to T. crassiceps infection. In contrast, similarly infected BALB/c mice treated with \( N^{{\text{ $ \omega $ }}} \)-nitro-l-arginine methyl ester (l-NAME, an inhibitor of NO synthase) mounted a similar immune response but with lower levels of NO and harbored nearly 100% more parasites than \( N^{{\text{ $ \omega $ }}} \)-nitro-d-arginine methyl ester (d-NAME, inactive enantiomer)-treated mice. To further analyze the role of NO in murine cysticercosis, we treated STAT6−/− male mice (known to be highly resistant to T. crassiceps) with l-NAME during 8 weeks of infection. As expected, STAT6−/− mice mounted a strong Th1-like response, produced high levels of IgG2a, IFN-γ, and IL-17, whereas their macrophages displayed increased transcripts of tumor necrosis factor (TNF)-α as well as inducible nitric oxide synthase (iNOS) and efficiently controlled T. crassiceps infection. However, STAT6−/− male mice receiving l-NAME mounted a similar immune response but with lower iNOS transcripts concomitantly with decreased levels of NO in sera and displayed significantly higher parasite burdens. These findings suggest that macrophage activation and NO production are effector mechanisms that importantly contribute in host resistance to T. crassiceps infection.


  1. Ahmed SF, Oswald IP, Caspar P, Hieny S, Keefer L, Sher A, James SL (1997) Developmental differences determine larval susceptibility to nitric oxide-mediated killing in a murine model of vaccination against Schistosoma mansoni. Infect Immun 65:219–226PubMedGoogle Scholar
  2. Allen JE, Loke P (2001) Divergent roles for macrophages in lymphatic filariasis. Parasite Immunol 23:345–352PubMedCrossRefGoogle Scholar
  3. Baig S, Damian RT, Molinari JL, Tato P, Morales-Montor J, Welch M, Talhouk J, Hashmeys R, White AC Jr (2005) Purification and characterization of a metacestode cysteine proteinase from Taenia solium involved in the breakdown of human IgG. Parasitology 131:411–416PubMedCrossRefGoogle Scholar
  4. Bancroft AJ, Else KJ, Sypek JP, Grencis RK (1997) Interleukin-12 promotes a chronic intestinal nematode infection. Eur J Immunol 27:866–870PubMedCrossRefGoogle Scholar
  5. Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916PubMedCrossRefGoogle Scholar
  6. Boonstra A, Asselin-Paturel C, Gilliet M, Crain C, Trinchieri G, Liu YJ, O’Garra A (2003) Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. J Exp Med 197:101–109PubMedCrossRefGoogle Scholar
  7. Bronte V, Zanovello P (2005) Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol 5:641–654PubMedCrossRefGoogle Scholar
  8. Colasanti M, Gradoni L, Mattu M, Persichini T, Salvati L, Venturini G, Ascenzi P (2002) Molecular bases for the anti-parasitic effect of NO (Review). Int J Mol Med 9:131–134PubMedGoogle Scholar
  9. Cosyns M, Tsirkin S, Jones M, Flavell R, Kikutani H, Hayward AR (1998) Requirement of CD40–CD40 ligand interaction for elimination of Cryptosporidium parvum from mice. Infect Immun 66:603–607PubMedGoogle Scholar
  10. Chaussabel D, Jacobs F, de Jonge J, de Veerman M, Carlier Y, Thielemans K, Goldman M, Vray B (1999) CD40 ligation prevents Trypanosoma cruzi infection through interleukin-12 upregulation. Infect Immun 67:1929–1934PubMedGoogle Scholar
  11. Ferrer E, Gonzalez LM, Foster-Cuevas M, Cortez MM, Davila I, Rodriguez M, Sciutto E, Harrison LJ, Parkhouse RM, Garate T (2005) Taenia solium: characterization of a small heat shock protein (Tsol-sHSP35.6) and its possible relevance to the diagnosis and pathogenesis of neurocysticercosis. Exp Parasitol 110:1–11PubMedCrossRefGoogle Scholar
  12. Finkelman FD, Katona IM, Mosmann TR, Coffman RL (1988) IFN-gamma regulates the isotypes of Ig secreted during in vivo humoral immune responses. J Immunol 140:1022–1027PubMedGoogle Scholar
  13. Fragoso G, Lamoyi E, Mellor A, Lomeli C, Govezensky T, Sciutto E (1996) Genetic control of susceptibility to Taenia crassiceps cysticercosis. Parasitology 112(Pt 1):119–124PubMedCrossRefGoogle Scholar
  14. Gause WC, Urban JF Jr, Stadecker MJ (2003) The immune response to parasitic helminths: insights from murine models. Trends Immunol 24:269–277PubMedCrossRefGoogle Scholar
  15. Hogaboam CM, Collins SM, Blennerhassett MG (1996) Effects of oral l-NAME during Trichinella spiralis infection in rats. Am J Physiol 271:G338–G346PubMedGoogle Scholar
  16. Kamanaka M, Yu P, Yasui T, Yoshida K, Kawabe T, Horii T, Kishimoto T, Kikutani H (1996) Protective role of CD40 in Leishmania major infection at two distinct phases of cell-mediated immunity. Immunity 4:275–281PubMedCrossRefGoogle Scholar
  17. Kolodziej-Sobocinska M, Dziemian E, Machnicka-Rowinska B (2006) Inhibition of nitric oxide production by aminoguanidine influences the number of Trichinella spiralis parasites in infected “low responders” (C57BL/6) and “high responders” (BALB/c) mice. Parasitol Res 99:194–196PubMedCrossRefGoogle Scholar
  18. Lawrence R, Allen J, Gregory W, Kopf M, Maizels R (1995) Infection of IL-4-deficient mice with the parasitic nematode Brugia malayi demonstrates that host resistance is not dependent on a T helper 2-dominated immune response. J Immunol 154:5995–6001PubMedGoogle Scholar
  19. Lawrence CE, Paterson JC, Wei XQ, Liew FY, Garside P, Kennedy MW (2000) Nitric oxide mediates intestinal pathology but not immune expulsion during Trichinella spiralis infection in mice. J Immunol 164:4229–4234PubMedGoogle Scholar
  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta]CT method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  21. Maillard H, Marionneau J, Prophette B, Boyer E, Celerier P (1998) Taenia crassiceps cysticercosis and AIDS. Aids 12:1551–1552PubMedCrossRefGoogle Scholar
  22. Maizels RM, Balic A, Gomez-Escobar N, Nair M, Taylor MD, Allen JE (2004) Helminth parasites-masters of regulation. Immunol Rev 201:89–116PubMedCrossRefGoogle Scholar
  23. Migliorini P, Corradin G, Corradin SB (1991) Macrophage NO2-production as a sensitive and rapid assay for the quantitation of murine IFN-gamma. J Immunol Methods 139:107–114PubMedCrossRefGoogle Scholar
  24. Mulcahy G, O’Neill S, Fanning J, McCarthy E, Sekiya M (2005) Tissue migration by parasitic helminths—an immunoevasive strategy? Trends Parasitol 21:273–277PubMedCrossRefGoogle Scholar
  25. Ponchel F, Toomes C, Bransfield K, Leong FT, Douglas SH, Field SL, Bell SM, Combaret V, Puisieux A, Mighell AJ, Robinson PA, Inglehearn CF, Isaacs JD, Markham AF (2003) Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnol 3:18PubMedCrossRefGoogle Scholar
  26. Reichmann G, Walker W, Villegas EN, Craig L, Cai G, Alexander J, Hunter CA (2000) The CD40/CD40 ligand interaction is required for resistance to toxoplasmic encephalitis. Infect Immun 68:1312–1318PubMedCrossRefGoogle Scholar
  27. Rivero A (2006) Nitric oxide: an antiparasitic molecule of invertebrates. Trends Parasitol 22:219–225PubMedCrossRefGoogle Scholar
  28. Rodriguez-Sosa M, David JR, Bojalil R, Satoskar AR, Terrazas LI (2002) Cutting edge: susceptibility to the larval stage of the helminth parasite Taenia crassiceps is mediated by Th2 response induced via STAT6 signaling. J Immunol 168:3135–3139PubMedGoogle Scholar
  29. Rodriguez-Sosa M, Rosas LE, David JR, Bojalil R, Satoskar AR, Terrazas LI (2003) Macrophage migration inhibitory factor plays a critical role in mediating protection against the helminth parasite Taenia crassiceps. Infect Immun 71:1247–1254PubMedCrossRefGoogle Scholar
  30. Rodriguez-Sosa M, Saavedra R, Tenorio EP, Rosas LE, Satoskar AR, Terrazas LI (2004) A STAT4-dependent Th1 response is required for resistance to the helminth parasite Taenia crassiceps. Infect Immun 72:4552–4560PubMedCrossRefGoogle Scholar
  31. Sasaki Y, Yoshimoto T, Maruyama H, Tegoshi T, Ohta N, Arizono N, Nakanishi K (2005) IL-18 with IL-2 protects against Strongyloides venezuelensis infection by activating mucosal mast cell-dependent type 2 innate immunity. J Exp Med 202:607–616PubMedCrossRefGoogle Scholar
  32. Tato P, Fernandez AM, Solano S, Borgonio V, Garrido E, Sepulveda J, Molinari JL (2004) A cysteine protease from Taenia solium metacestodes induce apoptosis in human CD4+ T-cells. Parasitol Res 92:197–204PubMedCrossRefGoogle Scholar
  33. Terrazas LI, Cruz M, Rodriguez-Sosa M, Bojalil R, Garcia-Tamayo F, Larralde C (1999) Th1-type cytokines improve resistance to murine cysticercosis caused by Taenia crassiceps. Parasitol Res 85:135–141PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Javier Alonso-Trujillo
    • 1
  • Irma Rivera-Montoya
    • 1
  • Miriam Rodríguez-Sosa
    • 1
  • Luis I. Terrazas
    • 1
  1. 1.Laboratory of Immunoparasitology, Unidad de Biomedicina, Facultad de Estudios Superiores-IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla, Edo. de MéxicoMexico

Personalised recommendations