Parasitology Research

, Volume 100, Issue 4, pp 783–790 | Cite as

Effect of oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.) essential oils on Trypanosoma cruzi (Protozoa: Kinetoplastida) growth and ultrastructure

  • Giani F. Santoro
  • Maria das Graças Cardoso
  • Luiz Gustavo L. Guimarães
  • Ana Paula S. P. Salgado
  • Rubem F. S. Menna-Barreto
  • Maurilio J. SoaresEmail author
Original Paper


In the present work, we have investigated the effect of essential oils obtained from Origanum vulgare L. (oregano) and Thymus vulgaris L. (thyme) on growth and ultrastructure of diverse evolutive forms of Trypanosoma cruzi. Culture epimastigotes and bloodstream trypomastigotes were incubated for 24 h with different concentrations of oregano or thyme essential oils and with thymol (the main constituent of thyme), and the inhibitory concentration (IC)50 was determined by cell counting. Crude extract of oregano essential oil inhibited epimastigote growth (IC50/24 h = 175 μg/ml) and also induced trypomastigote lysis (IC50/24 h = 115 μg/ml). Thyme essential oil presented IC50/24 h values of 77 μg/ml for epimastigotes and 38 μg/ml for trypomastigotes, while treatment with thymol resulted in an IC50/24 h of 62 μg/ml for epimastigotes and 53 μg/ml for trypomastigotes. Scanning electron microscopy of treated cells showed few morphological alterations at the plasma membrane. Observation by transmission electron microscopy showed cytoplasmic swelling with occasional morphological alterations in plasma and flagellar membrane. Our data indicate that oregano and thyme essential oils are effective against T. cruzi, with higher activity of thyme, and that thymol may be the main component responsible for the trypanocidal activity.


Thymol Carvacrol Trypanosoma Cruzi Mouse Peritoneal Macrophage Trypanocidal Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by CNPq, FIOCRUZ, and PAPES-IV. The authors thank Ms. Patricia Meuser Rego for technical assistance and Mr. Bruno Ávila (Departamento de Ultra-estrutura e Biologia Celular, IOC/FIOCRUZ) and Mr. Rodrigo Mexas (Laboratório de Produção e Tratamento de Imagens, IOC/FIOCRUZ) for help with the digital image treatment. The experiments comply with the current laws of Brazil.


  1. Adams RP (1995) Identification of essential oils components by gas chromatography/mass spectroscopy. Allured, Carol Stream, ILGoogle Scholar
  2. Aligiannis N, Kalpoutzakis E, Mitaku S, Chinou IB (2001) Composition and antimicrobial activity of the essential oils of two Origanum species. J Agric Food Chem 49:4168–4170PubMedCrossRefGoogle Scholar
  3. Bishop CD (1995) Antiviral activity of the essential oil of Melaleuca alternifolia (Maiden and Betche) Cheel (tea tree) against tobacco mosaic virus. J Essent Oil Res 7:641–644Google Scholar
  4. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253PubMedCrossRefGoogle Scholar
  5. Burt SA, Reinders RD (2003) Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Lett Appl Microbiol 36:162–167PubMedCrossRefGoogle Scholar
  6. Burt SA, Vlielander R, Haagsman HP, Veldhuizen EJ (2005) Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157:H7 by addition of food stabilizers. J Food Prot 68:919–926PubMedGoogle Scholar
  7. Cai L, Wu CD (1996) Compounds from Syzygium aromaticum possessing growth inhibitory activity against oral pathogens. J Nat Prod 59:987–990PubMedCrossRefGoogle Scholar
  8. Camargo EC (1964) Growth and differentiation in Trypanosoma cruzi. Origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop Sao Paulo 6:93–100Google Scholar
  9. Campos FR, Januario AH, Rosas LV, Nascimento SK, Pereira PS, Franca SC, Cordeiro MS, Toldo MP, Albuquerque S (2005) Trypanocidal activity of extracts and fractions of Bertholletia excelsa. Fitoterapia 76:26–29PubMedCrossRefGoogle Scholar
  10. Carson CF, Cookson BD, Farrelly HD, Riley TV (1995) Susceptibility of methicillin-resistant Staphylococcus aureus to the essential oil of Melaleuca alternifolia. J Antimicrob Chemother 35:421–424PubMedCrossRefGoogle Scholar
  11. Craveiro AA, Fernandes AG, Andrade CHS, Matos FJA, Alencar JW, Machado MIL (1981) Óleos Essenciais do Nordeste. Edições UFC, FortalezaGoogle Scholar
  12. Croft SL (1999) Pharmacological approaches to antitrypanosomal chemotherapy. Mem Inst Oswaldo Cruz 94:215–220PubMedCrossRefGoogle Scholar
  13. Croft SL, Urbina JA, Brun R (1997) Chemotherapy of human of leishmaniasis and trypanosomiasis. In: Hide G, Mottram JC, Coombs GH, Holmes PH (eds) Trypanosomiasis and leishmaniasis. CAB International, London, pp 245–257Google Scholar
  14. De Castro SL (1993) The challenge of Chagas disease chemotherapy: an update of drugs assayed against Trypanosoma cruzi. Acta Trop 53:83–98PubMedCrossRefGoogle Scholar
  15. Deans SG, Ritchie G (1987) Antibacterial properties of plant essential oils. Int J Food Microbiol 5:165–180CrossRefGoogle Scholar
  16. Ditry N, Dureuil L, Pinkas M (1994) Activity of thymol, carvacrol, cinnamaldehyde and eugenol on oral bacteria. Pharm Acta Helv 69:25–28CrossRefGoogle Scholar
  17. Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316PubMedCrossRefGoogle Scholar
  18. Friedman M, Henika PR, Mandrell RE (2002) Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot 65:1545–1560PubMedGoogle Scholar
  19. Giordani R, Regli P, Kaloustian J, Mikail C, Abou L, Portugal H (2004) Antifungal effect of various essential oils against Candida albicans. Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris. Phytother Res 18:990–995PubMedCrossRefGoogle Scholar
  20. Guenther E (1948) The production of essential oils. In: Guenther ED (ed) The essential oils, vol. 1. Van Nostrand, New York, pp 85–226Google Scholar
  21. Holetzi FB, Ueda-Nakamura T, Dias BP, Cortez DAG, Morgado-Diaz JA, Nakamura CV (2003) Effect of essential oil of Ocimum gratissimum on the trypanosomatid Herpetomonas samuelpessoai. Acta Protozool 42:269–275Google Scholar
  22. Janssen AM, Scheffer JJC, Baerheim Svendsen A (1987) Antimicrobial activity of essential oils: a 1976–1986 literature review. Aspects of the test methods. Planta Med 53:396–398Google Scholar
  23. Kayser O, Kiderlen AF, Croft SL (2003) Natural products as antiparasitic drugs. Parasitol Res 90:S55–S62PubMedCrossRefGoogle Scholar
  24. Knobloch K, Weigand H, Weis N, Schwarm H-M, Vigenschow H (1986) Action of terpenoids on energy metabolism. In: Brunke EJ (ed) Progress in essential oil research: 16th international symposium on essential oils. De Gruyter, Berlin, pp 429–445Google Scholar
  25. Kohlert C, Schindler G, Marz RW, Abel G, Brinkhaus B, Derendorf H, Grafe EU (2002) Systemic availability and pharmacokinetics of thymol in humans. J Clin Pharmacol 42:731–737PubMedCrossRefGoogle Scholar
  26. Lambert RJW, Skandamis PN, Coote PJ, Nychas GJE (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462PubMedCrossRefGoogle Scholar
  27. Lis-Balchin M, Deans SG (1997) Bioactivity of selected plant essential oils against Listeria monocytogenes. J Appl Microbiol 82:759–762PubMedCrossRefGoogle Scholar
  28. Mahmoud SS, Croteau RB (2002) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7:366–373PubMedCrossRefGoogle Scholar
  29. Meirelles RMS, Soares MJ (2001) Quick fixation of eukaryotic cell suspension for routine transmission electron microscopy. Acta Microsc 10:19–22Google Scholar
  30. Mikus J, Harkenthal M, Steverding D, Reichling J (2000) In vitro effect of essential oils and isolated mono- and sesquiterpenes on Leishmania major and Trypanosoma brucei. Planta Med 66:366–368PubMedCrossRefGoogle Scholar
  31. Mourey A, Canillac N (2002) Anti-Listeria monocytogenes activity of essential oils components of conifers. Food Control 13:289–292CrossRefGoogle Scholar
  32. Nychas GJE (1995) Natural antimicrobials from plants. In: Gould GW (ed) New methods of food preservation. Blackie Academic and Professional, London, pp 58–89Google Scholar
  33. Pandey R, Kalra A, Tandon S, Mehrotra N, Singh HN, Kumar S (2000) Essential oil compounds as potent source of nematicidal compounds. J Phytopathol 148:501–502CrossRefGoogle Scholar
  34. Paster N, Menasherov M, Ravid U, Juven B (1995) Antifungal activity of oregano and thyme essential oils applied as fumigants against fungi attacking stored grain. J Food Prot 58:81–85Google Scholar
  35. Pessoa LM, Morais SM, Bevilaqua CML, Luciano JHS (2002) Anthelmintic activity of essential oil of Ocimum gratissimum Linn. and eugenol against Haemonchus contortus. Vet Parasitol 109:59–63PubMedCrossRefGoogle Scholar
  36. Rassi A, Luquetti AO (1992) Therapy of Chagas disease. In: Wendel S, Brener Z, Camargo ME, Rassi A (eds) Chagas disease (American trypanosomiasis): its impact on transfusion and clinical medicine. SBHH, São Paulo, pp 237–247Google Scholar
  37. Rosa MSS, Mendonça-Filho RR, Bizzo HR, Rodrigues IA, Soares RMA, Souto-Padrón T, Alviano CS, Lopes AHCS (2003) Antileishmanial activity of a linalool-rich essential oil from Croton cajucara. Antimicrob Agents Chemother 47:1895–1901CrossRefGoogle Scholar
  38. Sepúlveda-Boza S, Cassels BK (1996) Plant metabolites active against Trypanosoma cruzi. Planta Med 62:98–105PubMedCrossRefGoogle Scholar
  39. Shelef LA (1983) Antimicrobial effects of spices. J Food Safety 6:29–44Google Scholar
  40. Silva LHP, Nussenzweig V (1953) Sobre uma cepa de Trypanosoma cruzi altamente virulenta para o camundongo branco. Folia Clin Biol (Sao Paulo) 20:191–208Google Scholar
  41. Sivropoulou A, Papanikolaou E, Nikolaou C, Kokkini S, Lanaras T, Arsenakis M (1996) Antimicrobial and citotoxic activities of Origanum essential oils. J Agric Food Chem 44:1202–1205CrossRefGoogle Scholar
  42. Soylu EM, Soylu S, Kurt S (2006) Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathologia 161:119–128PubMedCrossRefGoogle Scholar
  43. Stoppani AO (1999) The chemotherapy of Chagas disease. Medicina (B Aires) 59:147–165Google Scholar
  44. Tchoumbougnang F, Amvam Zollo PH, Dagne E, Mekonnen Y (2005) In vivo antimalarial activity of essential oils from Cymbopogon citratus and Ocimum gratissimum on mice infected with Plasmodium berghei. Planta Med 71:20–23PubMedCrossRefGoogle Scholar
  45. Ultee A, Bennik MHJ, Moezelaar R (2002) The phenolic hydroxyl group of carvacrol is essential for action against the foodborne pathogen Bacillus cereus. Appl Environ Microbiol 68:1561–1568PubMedCrossRefGoogle Scholar
  46. Urbina JA, Docampo R (2003) Specific chemotherapy of Chagas disease: controversies and advances. Trends Parasitol 19:495–501PubMedCrossRefGoogle Scholar
  47. WHO (2002) Control of Chagas disease. Tech Rep Ser 905:1–109Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Giani F. Santoro
    • 1
  • Maria das Graças Cardoso
    • 2
  • Luiz Gustavo L. Guimarães
    • 2
  • Ana Paula S. P. Salgado
    • 2
  • Rubem F. S. Menna-Barreto
    • 1
    • 3
  • Maurilio J. Soares
    • 1
    Email author
  1. 1.Laboratório de Biologia Celular de Microrganismos, Departamento de Ultra-estrutura e Biologia CelularInstituto Oswaldo Cruz/FIOCRUZRio de JaneiroBrazil
  2. 2.Departamento de QuímicaUniversidade Federal de LavrasLavrasBrazil
  3. 3.Laboratório de Biologia Celular, Departamento de Ultra-estrutura e Biologia CelularInstituto Oswaldo Cruz/FIOCRUZRio de JaneiroBrazil

Personalised recommendations