Parasitology Research

, Volume 100, Issue 1, pp 141–148 | Cite as

Linkage disequilibrium between two distinct loci in chromosomes 5 and 7 of Plasmodium falciparum and in vivo chloroquine resistance in Southwest Nigeria

  • C. T. HappiEmail author
  • G. O. Gbotosho
  • O. A. Folarin
  • A. Sowunmi
  • O. M. Bolaji
  • B. A. Fateye
  • D. E. Kyle
  • W. Milhous
  • D. F. Wirth
  • A. M. J. Oduola
Original Paper


Chloroquine (CQ) resistance in Plasmodium falciparum is associated with polymorphisms in loci on pfcrt and pfmdr1 genes. In this study, we determined the association and linkage disequilibrium between in vivo CQ resistance and P. falciparum polymorphisms in pfcrt gene at codon 76 and pfmdr1 gene at codon 86 in isolates obtained from 111 children with acute uncomplicated falciparum malaria in Nigeria. Patients were treated with standard dosage of CQ and followed up for 28 days. Filter paper samples were collected at enrollment and during follow-up for parasites genotypes and identification of pfcrt and pfmdr1 mutations. Association and linkage disequilibrium between mutant pfcrtT76 and pfmdr1Y86 alleles in pretreatment isolates of P. falciparum was determined. Fifty-five out of the 111 patients (49.5%) failed treatment. Single mutant pfcrtT76 or pfmdr1Y86 alleles were found in 55 out of 111 P. falciparum isolates screened at enrollment. Of these 55 isolates, the mutant pfcrtT76 and pfmdr1Y86 alleles were found in 84%. Both mutant pfcrtT76 (p=0.0196) and pfmdr1Y86 (p=0.000042) alleles were associated with in vivo CQ resistance. In addition, the mutant pfcrtT76 (p=0.047) and pfmdr1Y86 (p=0.006) alleles were significantly selected by CQ in patients who failed treatment. Association analysis between paired single alleles at pfcrt and pfmdr1 loci showed a significant association (p=0.0349 and χ 2=4.45) between the pfcrt T76 allele on chromosome 7 and the pfmdr1Y86 allele on chromosome 5 and that these two mutant alleles were in linkage disequilibrium (p=0.000, D′=0.64, and r 2=0.28). Considering the high level of CQ resistance and drug use in the study area, the observed linkage disequilibrium between the mutant pfcrtT76 and pfmdr1Y86 alleles is maintained epistatically through directional CQ selective pressure.


Linkage Disequilibrium Malaria Pfmdr1 Gene Pfcrt Gene Intense Malaria Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank all the patients and their parents or guardians for volunteering to participate in the study. We thank MR4 for providing all genomic DNA used as controls for PCR and RFLP experiments. We also Thank Dr. Dan Milner at the Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA for providing helpful comments on the manuscript. This study was supported by grants from the Fogarty International Centre, the Multilateral Initiative for Malaria in Africa (MIM)/Training in Tropical Diseases (TDR), the UNICEF/United Nations Development Programme/World Bank/WHO/TDR, and the Harvard Malaria Initiative and the International Atomic Energy Agency (IAEA) project RAF/0625. C. T. Happi is supported by a Fogarty International Research Collaboration Award no. NIH RO3TW006298-01A1, the IAEA project RAF/0625, and the WHO/TDR/PAG/South–South Initiative project ID A50337. G. O. G. is supported by the MIM/TDR project ID A20239.


  1. Adagu IS, Warhurst DC (2001) Plasmodium falciparum: linkage disequilibrium between loci in chromosomes 7 and 5 and chloroquine selective pressure in Northern Nigeria. Parasitology 123:219–224PubMedCrossRefGoogle Scholar
  2. Adagu I, Warhurst D, Carruci D, Duraisingh MT (1995) Pfmdr1 mutations and chloroquine-resistance in Plasmodium falciparum isolates from Zaria, Nigeria. Trans R Soc Trop Med Hyg 89:132CrossRefGoogle Scholar
  3. Adagu I, Dias FP, Rombo L, Do Rosario V, Warhurst D (1996) Guinea Bissau: association of chloroquine resistance of Plasmodium falciparum with the Tyr86 allele of the multiple drug resistance gene. Trans R Soc Trop Med Hyg 90:90–91PubMedCrossRefGoogle Scholar
  4. Awad-el-Kariem FM, Miles MA, Warhurst DC (1992) Chloroquine resistant Plasmodium falciparum isolates from Sudan lack two mutations in the pfmdr1 gene thought to be associated with chloroquine resistance. Trans R Soc Trop Med Hyg 86:587–589PubMedCrossRefGoogle Scholar
  5. Basco LK, Ringwald P (1998) Molecular epidemiology of malaria in Yaounde, Cameroon. III. Analysis of chloroquine resistance and point mutations in the multidrug resistance 1 (pfmr1) gene of Plasmodium falciparum. Am J Trop Med Hyg 59:577–581PubMedGoogle Scholar
  6. Basco LK, Le Bras J, Rhoades Z, Wilson CM (1995) Analysis of pfmdr1 and drug susceptibility in fresh isolates of Plasmodium falciparum from sub-Saharan Africa. Mol Biochem Parasitol 74:157–166PubMedCrossRefGoogle Scholar
  7. Basco LK, De Poucelas PE, Le Bras J, Wilson CM (1996) Plasmodium falciparum: molecular characterization of multidrug-resistant Cambodian isolates. Exp Parasitol 82:97–103PubMedCrossRefGoogle Scholar
  8. Bray PG, Martin RE, Tilley SA, Ward SA, Kirk K, Fidock DA (2005) Defining the role of PfCRT in Plasmodium falciparum chloroquine resistance. Mol Microbiol 56:323–333PubMedCrossRefGoogle Scholar
  9. Cojean S, Noel A, Garnier D, Hubert V, Le Bras J, Durand R (2006) Lack of association between putative transporter gene polymorphisms in Plasmodium falciparum and chloroquine resistance in imported malaria isolates from Africa. Malar J 5:24PubMedCrossRefGoogle Scholar
  10. Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte Y, Dicko A, Su XZ, Nomura T, Fidock DA, Wellems TE, Plowe CV, Coulibali D (2001a) A molecular marker for chloroquine-resistant falciparum malaria. New Engl J Med 344:257–263PubMedCrossRefGoogle Scholar
  11. Djimde AA, Doumbo OK, Traore O, Guindo A, Kayentao K, Diourte Y, Doumbo SN, Coulibaly D, Kone A, Tekete M, Fofana B, Cissoko Y, Plowe CV (2001b) Application of molecular markers as an epidemiological surveillance tool for chloroquine resistant malaria. Lancet 358:890–891PubMedCrossRefGoogle Scholar
  12. Djimde AA, Doumbo OK, Traore O, Guindo AB, Kayentao K, Diourte Y, Niare-Doumbo S, Coulibaly D, Kone AK, Cissoko Y, Tekete M, Fofana B, Dicko A, Diallo DA, Wellems TE, Kwiatkowski D, Plowe CV (2003) Clearance of drug-resistant parasites as a model for protective immunity in Plasmodium falciparum malaria. Am J Trop Med Hyg 69:558–563PubMedGoogle Scholar
  13. Dorsey G, Kamya MR, Singh A, Rosenthal P (2001) Polymorphisms in the Plasmodium falciparum pfcrt and pfmdr1 genes and clinical response to chloroquine in Kampala, Uganda. J Infect Dis 183:1417–1420PubMedCrossRefGoogle Scholar
  14. Duraisingh MI, Drakeley CI, Muller O, Bailey R, Snounou G, Targett GA, Greenwood B, Warhurst D (1997) Evidence for selection for the tyrosine 86 allele of pfmdr1 gene of Plasmodium falciparum by chloroquine and amodiaquine. Parasitology 114:205–211PubMedCrossRefGoogle Scholar
  15. Duraisingh MT, von Seidlein L, Jepson A, Jones P, Sambou I, Pinder M, Warhurst DC (2000) Linkage disequilibrium between two chromosomally distinct loci associated with increased resistance to chloroquine in Plasmodium falciparum. Parasitology 121:1–8PubMedCrossRefGoogle Scholar
  16. Fidock DA, Takashi N, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, Ursos LMB, Sidhu AS, Naude B, Kirk WD, Su X-Z, Wootton JC, Roepe PD, Wellems TE (2000) Mutation in the P. falciparum digestive vacuole transmembrane protein Pfcrt and evidence for their role in chloroquine resistance. Mol Cell 861:861–871CrossRefGoogle Scholar
  17. Fluek TPF, Jelinek T, Kilian AHD, Adagu IS, Kabagambe G, Von Sonnenburg F, Warhurst DC (2000) Correlation of in vivo resistance to chloroquine and allelic polymorphisms in Plasmodium falciparum isolates from Uganda. TM IH Trop Med Int Health 5:174–178CrossRefGoogle Scholar
  18. Foote SJ, Kyle DE, Martin RK, Oduola AM, Forsyth K, Kemp DJ, Cowman AF (1990) Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature 345:255–258PubMedCrossRefGoogle Scholar
  19. Frean JA, el-Kariem FM, Warhurst DC, Miles MA (1992) Rapid detection of pfmdr1 mutations in chloroquine-resistant Plasmodium falciparum malaria by polymerase chain reaction analysis of blood spots. Trans R Soc Trop Med Hyg 86:29–30PubMedCrossRefGoogle Scholar
  20. Happi TC, Thomas SM, Gbotosho GO, Falade CO, Akinboye DO, Gerena L, Hudson T, Sowunmi A, Kyle DE, Milhous W, Wirth DF, Oduola AMJ (2003) Point mutations in the pfcrt and pfmdr-1 genes of Plasmodium falciparum and clinical response to chloroquine, among malaria patients from Nigeria. Ann Trop Med Parasitol 97:439–451PubMedCrossRefGoogle Scholar
  21. Happi TC, Gbotosho GO, Sowunmi A, Falade CO, Akinboye DO, Gerena L, Kyle DE, Milhous W, Wirth DF, Oduola AMJ (2004) Molecular analysis of recrudescent Plasmodium falciparum malaria infections in children treated with chloroquine in Nigeria. Am J Trop Med Hyg 70:20–26PubMedGoogle Scholar
  22. Happi CT, Gbotosho GO, Folarin OA, Akinboye DO, Yusuf BO, Ebong OO, Sowunmi A, Kyle DE, Milhous W, Wirth DF, Oduola AMJ (2005) Polymorphisms in Plasmodium falciparum dhfr and dhps genes and age related in vivo sulfadoxine-pyrimethamine resistance in malaria-infected patients from Nigeria. Acta Trop 95:183–193PubMedCrossRefGoogle Scholar
  23. Hill WG, Robertson A (1968) The effect of in breeding at loci with heterozygote disadvantage. Genetics 60:615–628PubMedGoogle Scholar
  24. Johnson DJ, Fidock DA, Mungthin M, Lakshamanan V, Sidhu AB, Bray PG, Ward SA (2004) Evidence for a central role for pfcrt in conferring Plasmodium falciparum resistance to diverse antimalarial agents. Mol Cell 15:867–877PubMedCrossRefGoogle Scholar
  25. Lewontin RC (1964) The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49:49–67PubMedGoogle Scholar
  26. Looareswan S, Viravan C, Webster HK, Kyle DE, Hutchinson DB, Candfield CJ (1996) Clinical studies of atovaquone, alone or in combination with other antimalarial drugs, for treatment of acute uncomplicated malaria in Thailand. Am J Trop Med Hyg 54:62–66Google Scholar
  27. Maguire JD, Susanti AI, Krisin MH, Sismadi P, Fryauff DJ, Baird JK (2001) The 76 mutation in the pfcrt gene of Plasmodium falciparum and clinical chloroquine resistance phenotype in Papua, Indonesia. Ann Trop Med Parasitol 95:559–572PubMedCrossRefGoogle Scholar
  28. Martin RE, Kirk K (2004) The malaria parasite’s chloroquine resistance transporter is a member of the drug metabolic super family. Mol Biol Evol 21:1938–1949PubMedCrossRefGoogle Scholar
  29. Mayor AG, Gomez-Olive X, Aponte JJ, Casimiro S, Mabunda S, Dgedge M, Barreto A, Alonso PL (2001) Prevalence of the K76T mutation in the putative Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene and its relation to chloroquine resistance in Mozambique. J Infect Dis 183:1413–1416PubMedCrossRefGoogle Scholar
  30. Mu J, Ferdig MT, Feng X, Joy DA, Duan J, Furuya T, Subramanian G, Aravind L, Cooper RA, Wootton JC, Xiong M, Su X-Z (2003) Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Mol Microbiol 49:977–989PubMedCrossRefGoogle Scholar
  31. Ochong EO, Van Den Broek IVF, Keus K, Nzila A (2003) Association between chloroquine and amodiaquine resistance and allelic variation in the Plasmodium falciparum multiple drug resistance 1 gene and the chloroquine resistance transporter gene in isolates from the upper Nile in Southern Sudan. Am J Trop Med Hyg 69:184–187PubMedGoogle Scholar
  32. Oduola AMJ, Weatherly NF, Bowdre JH, Desjardins RE (1988) Plasmodium falciparum: cloning by single-erythrocyte micromanipulation and heterogeneity in vitro. Exp Parasitol 66:86–95PubMedCrossRefGoogle Scholar
  33. Omar SA, Adagu IS, Gump DW, Ndaru NP, Warhurst D (2001) Plasmodium falciparum in Kenya: high prevalence of drug-resistance-associated polymorphisms in hospital admission with severe malaria in an epidemic area. Ann Trop Med Parasitol 95:661–669PubMedCrossRefGoogle Scholar
  34. Pillai DR, Labbe AC, Vanisaveth V, Hongvangthong B, Pomphida S, Inkahthone S, Zhong K, Kain KC (2001) Plasmodium falciparum malaria in Laos: chloroquine treatment outcome and value of molecular markers. J Infect Dis 18:789–795CrossRefGoogle Scholar
  35. Ranford-Cartwright LC, Taylor J, Umasunthar T, Taylor LH, Babiker HA, Lell B, Schmidt-Ott JR, Lehman LG, Walliker D, Kremsner PG (1997) Molecular analysis of recrudescent parasites in a Plasmodium falciparum drug efficacy trial in Gabon. Trans R Soc Trop Med Hyg 91:719–724PubMedCrossRefGoogle Scholar
  36. Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF (2000) Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403:906–909PubMedCrossRefGoogle Scholar
  37. Sidhu AB, Verdier-Pinard D, Fidock DA (2002) Chloroquine resistance in Plasmodium falciparum malaria conferred by pfcrt mutations. Science 298:210–213PubMedCrossRefGoogle Scholar
  38. Snounou G, Zhu X, Siripoon N, Jarra W, Thaithong S, Brown KN, Viriyakosol S (1999) Biased distribution of msp1 and msp2 allelic variants in Plasmodium falciparum populations in Thailand. Trans R Soc Trop Med Hyg 93:369–374PubMedCrossRefGoogle Scholar
  39. Sowunmi A, Ayede AI, Falade AG, Ndikum VN, Falade CO, Happi TC, Oduola AMJ (2001) Randomized trials of chloroquine and amodiaquine in acute uncomplicated Plasmodium falciparum malaria in children. Ann Trop Med Parasitol 95:549–558PubMedCrossRefGoogle Scholar
  40. Sutherland CJ, Alloueche A, Curtis J, Drakeley CI, Ord R, Duraisignh M, Greenwood BM, Pinder M, Warhurst D, Target GAT (2002) Gambian children successfully treated with CQ can harbor and transmit Plasmodium falciparum gametocytes carrying resistant genes. Am J Trop Med Hyg 67:568–585Google Scholar
  41. Tinto H, Sanou B, Dujardin JC, Ouedraogo JB, Van Overmeir C, Erhart A, Van Marck E, Guiguemde TR, D’Alessandro U (2005) Usefulness of the Plasmodium falciparum chloroquine resistance transporter T76 genotype failure index for the estimation of in vivo chloroquine resistance in Burkina Faso. Am J Trop Med Hyg 73:171–173PubMedGoogle Scholar
  42. Warhurst D (2001) A molecular marker for chloroquine-resistant falciparum malaria. New Engl J Med 344:299–302PubMedCrossRefGoogle Scholar
  43. Warhurst DC (2003) Polymorphism in the Plasmodium falciparum chloroquine-resistance transporter protein links verapamil enhancement of chloroquine sensitivity with the clinical efficacy of amodiaquine. Malar J 19:31CrossRefGoogle Scholar
  44. Wellems TE, Walker-Jonah A, Panton LJ (1991) Genetic mapping of the chloroquine resistance locus on Plasmodium falciparum chromosome 7. Proc Natl Acad Sci USA 88:3382–3386PubMedCrossRefGoogle Scholar
  45. Wilson CM, Serrano AE, Wasley A, Bogenschutz MP, Shankar AH, Wirth DF (1989) Amplification of a gene related to mammalian mdr genes in drug resistant Plasmodium falciparum. Science 224:1184–1186CrossRefGoogle Scholar
  46. WHO (1996) Assessment of therapeutic efficacy of antimalarial drugs for uncomplicated malaria in areas with intense transmission. WHO/MAL/96-1077. GenevaGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • C. T. Happi
    • 1
    • 3
    Email author
  • G. O. Gbotosho
    • 1
  • O. A. Folarin
    • 1
  • A. Sowunmi
    • 1
  • O. M. Bolaji
    • 1
  • B. A. Fateye
    • 1
  • D. E. Kyle
    • 2
  • W. Milhous
    • 2
  • D. F. Wirth
    • 3
  • A. M. J. Oduola
    • 4
  1. 1.Malaria Research Laboratories, Institute for Advanced Medical Research and Training, College of MedicineUniversity of IbadanIbadanNigeria
  2. 2.Division of Experimental TherapeuticsWalter Reed Army Institute of ResearchSilver SpringsUSA
  3. 3.Department of Immunology and Infectious DiseasesHarvard School of Public HealthBostonUSA
  4. 4.Special Programme for Research and Training in Tropical Diseases (WHO/TDR)GenevaSwitzerland

Personalised recommendations