Advertisement

Parasitology Research

, Volume 100, Issue 1, pp 123–130 | Cite as

Symbiosis of Mycoplasma hominis in Trichomonas vaginalis may link metronidazole resistance in vitro

  • J. C. Xiao
  • L. F. Xie
  • S. L. Fang
  • M. Y. Gao
  • Y. Zhu
  • L. Y. Song
  • H. M. Zhong
  • Z. R. LunEmail author
Original Paper

Abstract

Fourteen of 28 Trichomonas vaginalis isolates collected from patients in Guangzhou, China from 2003 to 2004 were found to be naturally infected with Mycoplasma hominis, as determined by PCR using specific primers. In vitro metronidazole sensitivity assay of the 28 isolates revealed four displaying low susceptibility [minimum lethal concentration (MLC)=∼13–25 μg/ml] and another four displaying high resistance (MLC=50–100 μg/ml). The overwhelming majority of these resistant isolates (7/8) were mycoplasma-infected. The mean of MLCs of mycoplasma-infected isolates is ∼10-fold higher than the mean of noninfected isolates (p=0.029). Sequence analyses of PCR-amplified small subunit–large subunit rRNA interspacer regions (ITS1/5.8S/ITS2) revealed that 23 of the 28 samples are identical, the remaining five being separable into two groups, each with a single point mutation. These internal transcribed spacer sequence variants are associated neither with mycoplasma infection nor with drug resistance. In contrast, random amplified polymorphic DNA analyses of DNAs using 10 different primers showed that the drug-resistant isolates are clustered together in association with mycoplasma infection, albeit more loosely. Taken together, the results obtained from this study suggest that in vitro metronidazole resistance of T. vaginalis is related to mycoplasma infection of this protozoan.

Keywords

Human Immunodeficiency Virus Internal Transcribe Spacer Metronidazole Tinidazole Trichomoniasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Drs. R.L. Owen and K.P. Chang for their critical reviews of the manuscript. This work was supported in part by grants from the Ministry of National Education (DPCKSCU/IRT0447), Sun Yat-Sen (Zhongshan) University (#3253280) and the Natural Science Foundation of Guangdong Province (#04105510) to ZRL.

References

  1. Blanchard A, Yanez A, Dybvig K, Watson HL, Griffiths G, Cassell GH (1993) Evaluation of intraspecies genetic variation within the 16S rRNA gene of Mycoplasma hominis and detection by polymerase chain reaction. J Clin Microbiol 31:1358–1361PubMedGoogle Scholar
  2. Brown DM, Upcroft JA, Dodd HN, Chen N, Upcroft P (1999) Alternative 2-keto acid oxidoreductase activities in Trichomonas vaginalis. Mol Biochem Parasitol 98:203–214PubMedCrossRefGoogle Scholar
  3. Chakrabarti D, Dame JB, Gutell RR, Yowell CA (1992) Characterization of the rDNA unit and sequence analysis of the small subunit rRNA and 5.8S rRNA genes from Tritrichomonas foetus. Mol Biochem Parasitol 52:75–83PubMedCrossRefGoogle Scholar
  4. Clyde WA Jr, Chanock RM, Tully JG (1990) Mycoplasmas. In: Davis BD, Dulbecco R, Eisen HN, Ginsberg HS (eds) Microbiology, 4th edn. Lippincott, PhiladelphiaGoogle Scholar
  5. Dessi D, Delogu G, Emonte E, Catania MR, Fiori PL, Rappelli P (2005) Long-term survival and intracellular replication of Mycoplasma hominis in Trichomonas vaginalis cells: potential role of the protozoon in transmitting bacterial infection. Infect Immun 73:1180–1186PubMedCrossRefGoogle Scholar
  6. Diamond LS (1957) The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43:488–490PubMedCrossRefGoogle Scholar
  7. Dong Z, Hoven CW, Rosenfield A (2005) Lessons from the past. Nature 433:573–574PubMedCrossRefGoogle Scholar
  8. Dunne RL, Dunn LA, Upcroft P, O’Donoghue PJ, Upcroft JA (2003) Drug resistance in the sexually transmitted protozoan Trichomonas vaginalis. Cell Res 13:239–249PubMedCrossRefGoogle Scholar
  9. Durel P, Couture J, Bassoullet MT (1967) The rapid detection of metronidazole in urine. Br J Vener Dis 43:111–113PubMedGoogle Scholar
  10. Edwards DI, Thompson EJ, Tomusange J, Shanson D (1979) Inactivation of metronidazole by aerobic organisms. J Antimicrob Chemother 5:315–316PubMedCrossRefGoogle Scholar
  11. Flegr J, Zaboj P, Vanacova S (1998) Correlation between aerobic and anaerobic resistance to metronidazole in trichomonads: application of a new computer program for permutation tests. Parasitol Res 84:590–592PubMedCrossRefGoogle Scholar
  12. Gunderson J, Hinkle G, Leipe D, Morrison HG, Stickel SK, Odelson DA, Breznak JA, Nerad TA, Muller M, Sogin ML (1995) Phylogeny of trichomonads inferred from small-subunit rRNA sequences. J Eukaryot Microbiol 42:411–415PubMedCrossRefGoogle Scholar
  13. Hallden C, Hansen M, Nilsson NO, Hjerdin A, Sall T (1996) Competition as a source of errors in RAPD analysis. Theor Appl Genet 93:1185–1192CrossRefGoogle Scholar
  14. Hampl V, Vanáčová Š, Kulda J, Flegr J (2001) Concordance between genetic relatedness and phenotypic similarities of Trichomonas vaginalis strains. BMC Evol Biol 1:11PubMedCrossRefGoogle Scholar
  15. Heine P, McGregor JA (1993) Trichomonas vaginalis: a reemerging pathogen. Clin Obstet Gynecol 36:137–144PubMedCrossRefGoogle Scholar
  16. Heyworth R, Simpson D, McNeillage GJ, Robertson DH, Young H (1980) Isolation of Trichomonas vaginalis resistant to metronidazole. Lancet 2:476–478PubMedCrossRefGoogle Scholar
  17. Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 166:411–453CrossRefGoogle Scholar
  18. Ingham HR, Hall CJ, Sisson PR, Tharagonnet D, Selkon JB (1979) Inactivation of metronidazole by aerobic organisms. J Antimicrob Chemother 5:734–735PubMedCrossRefGoogle Scholar
  19. Jacobs B, Mayaud P, Changalucha J, Todd J, Ka-Gina G, Grosskurth H, Berege ZA (1997) Sexual transmission of hepatitis B in Mwanza, Tanzania. Sex Transm Dis 24:121–126PubMedCrossRefGoogle Scholar
  20. Katiyar SK, Visvesvara GS, Edlind TD (1995) Comparisons of ribosomal RNA sequences from amitochondrial protozoa: implications for processing, mRNA binding and paromomycin susceptibility. Gene 152:27–33PubMedCrossRefGoogle Scholar
  21. Kulda J, Tachezy J, Cerkasovova A (1993) In vitro induced anaerobic resistance to metronidazole in Trichomonas vaginalis. J Eukaryot Microbiol 40:262–269PubMedCrossRefGoogle Scholar
  22. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  23. Laga M, Manoka A, Kivuvu M, Malele B, Tuliza M, Nzila N, Goeman J, Behets F, Batter V, Alary M (1993) Non-ulcerative sexually transmitted diseases as risk factors for HIV-1 transmission in women: results from a cohort study. AIDS 7:95–102PubMedCrossRefGoogle Scholar
  24. Land KM, Johnson PJ (1999) Molecular basis of metronidazole resistance in pathogenic bacteria and protozoa. Drug Resist Updat 2:289–294PubMedCrossRefGoogle Scholar
  25. Lossick JG (1989) Trichomonads parasitic in man. In: Honigberg BM (ed) Therapy of urogenital trichomoniasis. Springer, Berlin Heidelberg New YorkGoogle Scholar
  26. Lu H (1991) Treatment situation of vaginitis of Trichomonas vaginalis and leaf mold by Chinese traditional medicine. Acta Chinese Med Pharma 4:31–33Google Scholar
  27. Lu F, Zhang D, Tian F (2004) Preliminary analysis of HIV epidemic in China. National Center for Disease Control and Prevention, BeijingGoogle Scholar
  28. Mammen-Tobin A, Wilson JD (2005) Management of metronidazole-resistant Trichomonas vaginalis—a new approach. Int J STD AIDS 16:488–490PubMedCrossRefGoogle Scholar
  29. Mayta H, Gilman RH, Calderon MM, Gottlieb A, Soto G, Tuero I, Sanchez S, Vivar A (2000) 18S ribosomal DNA-based PCR for diagnosis of Trichomonas vaginalis. J Clin Microbiol 38:2683–2687PubMedGoogle Scholar
  30. McFadzean JA, Pugh IM, Squires SL, Whelan JP (1969) Further observations on strain sensitivity of Trichomonas vaginalis to metronidazole. Br J Vener Dis 45:161–162PubMedGoogle Scholar
  31. Minkoff H, Grunebaum AN, Schwarz RH, Feldman J, Cummings M, Crombleholme W, Clark L, Pringle G, McCormack WM (1984) Risk factors for prematurity and premature rupture of membranes: a prospective study of the vaginal flora in pregnancy. Am J Obstet Gynecol 150:965–972PubMedGoogle Scholar
  32. Narcisi EM, Secor WE (1996) In vitro effect of tinidazole and furazolidone on metronidazole-resistant Trichomonas vaginalis. In vitro effect of tinidazole and furazolidone on metronidazole-resistant Trichomonas vaginalis. Antimicrob Agents Chemother 40:1121–1125PubMedGoogle Scholar
  33. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A 76:5269–5270PubMedCrossRefGoogle Scholar
  34. Nyirjesy P, Weitz MV, Gelone SP, Fekete T (1995) Paromomycin for nitroimidazole-resistant trichomonosis. Lancet 346:1110PubMedCrossRefGoogle Scholar
  35. Quon DV, d’Oliveira CE, Johnson PJ (1992) Reduced transcription of the ferredoxin gene in metronidazole-resistant Trichomonas vaginalis. Proc Natl Acad Sci U S A 89:4402–4406PubMedCrossRefGoogle Scholar
  36. Rappelli P, Addis MF, Carta F, Fiori PL (1998) Mycoplasma hominis parasitism of Trichomonas vaginalis. Lancet 352:1286PubMedCrossRefGoogle Scholar
  37. Rappelli P, Carta F, Delogu G, Addis MF, Dessi D, Cappuccinelli P, Fiori PL (2001) Mycoplasma hominis and Trichomonas vaginalis symbiosis: multiplicity of infection and transmissibility of M. hominis to human cells. Arch Microbiol 175:70–74PubMedCrossRefGoogle Scholar
  38. Rasoloson D, Tomkova E, Cammack R, Kulda J, Tachezy J (2001) Metronidazole-resistant strains of Trichomonas vaginalis display increased susceptibility to oxygen. Parasitology 123:45–56PubMedCrossRefGoogle Scholar
  39. Saitou N, Nei M (1987) The Neighbor-joining method: a new method for reconstruction of phylogenetics trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  40. Salvaggio A, Conti M, Albano A, Pianetti A, Muggiasca ML, Re M, Salvaggio L (1993) Sexual transmission of hepatitis C virus and HIV-1 infection in female intravenous drug users. Eur J Epidemiol 9:279–284PubMedCrossRefGoogle Scholar
  41. Sambrook J, Russell David W (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, New YorkGoogle Scholar
  42. Schmid G, Narcisi E, Mosure D, Secor WE, Higgins J, Moreno H (2001) Prevalence of metronidazole-resistant Trichomonas vaginalis in a gynecology clinic. J Reprod Med 46:545–549PubMedGoogle Scholar
  43. Snipes LJ, Gamard PM, Narcisi EM, Beard CB, Lehmann T, Secor WE (2000) Molecular epidemiology of metronidazole resistance in a population of Trichomonas vaginalis clinical isolates. J Clin Microbiol 38:3004–3009PubMedGoogle Scholar
  44. Sobel JD, Nagappan V, Nyirjesy P (1999) Metronidazole-resistant vaginal trichomoniasis—an emerging problem. N Engl J Med 341:292–293PubMedCrossRefGoogle Scholar
  45. Steindel M, Dias Neto E, Pinto CJ, Grisard EC, Menezes CL, Murta SM, Simpson AJ, Romanha AJ (1994) Randomly amplified polymorphic DNA (RAPD) and isoenzyme analysis of Trypanosoma rangeli strains. J Eukaryot Microbiol 41:261–267PubMedCrossRefGoogle Scholar
  46. Stellrecht KA, Woron AM, Mishrik NG, Venezia RA (2004) Comparison of multiplex PCR assay with culture for detection of genital mycoplasmas. J Clin Microbiol 42:1528–1533PubMedCrossRefGoogle Scholar
  47. Vanáčová S, Tachezy J, Kulda J, Flegr J (1997) Characterization of trichomonad species and strains by PCR fingerprinting. J Eukaryot Microbiol 44:545–552Google Scholar
  48. Voolmann T, Boreham P (1993) Metronidazole resistant Trichomonas vaginalis in Brisbane. Med J Aust 159:490PubMedGoogle Scholar
  49. Willmott F, Say J, Downey D, Hookham A (1983) Zinc and recalcitrant trichomoniasis. Lancet 1:1053PubMedCrossRefGoogle Scholar
  50. World Health Organization (2001) Trichomoniasis. In: Global prevalence and incidence of selected curable sexually transmitted infections. Geneva, SwitzerlandGoogle Scholar
  51. Yu HM (1992) Treatment and epidemic of Trichomonas vaginalis in China. Guangzhou Med 23:54–56Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • J. C. Xiao
    • 1
  • L. F. Xie
    • 1
  • S. L. Fang
    • 1
  • M. Y. Gao
    • 2
  • Y. Zhu
    • 2
  • L. Y. Song
    • 2
  • H. M. Zhong
    • 2
  • Z. R. Lun
    • 1
    Email author
  1. 1.Center for Parasitic Organisms, State Key Laboratory of Biocontrol and Key Laboratory for Tropical Diseases Control of the Ministry of Education, School of Life SciencesSun Yat-Sen (Zhongshan) UniversityGuangzhouPeople’s Republic of China
  2. 2.Obstetrics and Gynecology Departmentthe Second Affiliated Hospital of Guangzhou Medical CollegeGuangzhouPeople’s Republic of China

Personalised recommendations