Advertisement

Parasitology Research

, 99:368 | Cite as

Phenotypic comparison of allopatric populations of Fasciola hepatica and Fasciola gigantica from European and African bovines using a computer image analysis system (CIAS)

  • M. V. Periago
  • M. A. Valero
  • M. Panova
  • S. Mas-Coma
Original Paper

Abstract

The quantification of the different sizes and shapes of Fasciola hepatica and Fasciola gigantica from bovines has been achieved for the first time in natural allopatric populations. Linear measurements, areas and ratios of gravid adults and eggs of F. hepatica (from France and Spain) and F. gigantica (from Burkina Faso) were analysed using a computer image analysis system and an allometric model: \({{\left( {y_{{2{\text{m}}}} - y_{2} } \right)}} \mathord{\left/ {\vphantom {{{\left( {y_{{2{\text{m}}}} - y_{2} } \right)}} {y_{2} }}} \right. \kern-\nulldelimiterspace} {y_{2} } = c{\left[ {{{\left( {y_{{1{\text{m}}}} - y_{1} } \right)}} \mathord{\left/ {\vphantom {{{\left( {y_{{1{\text{m}}}} - y_{1} } \right)}} {y_{1} }}} \right. \kern-\nulldelimiterspace} {y_{1} }} \right]}^{b}\), where y 1=body area or body length, y 2=one of the measurements analysed, y 1m, y 2m=maximum values towards which y 1 and y 2, respectively, tend and c, b=constants. All the measurements overlap in the two fasciolids, apart from the distance between the ventral sucker and the posterior end of the body, body roundness and body length/body width ratio. The results obtained may be useful in Fasciola species identification in countries where both species coexist.

Keywords

Body Length Body Area Ventral Sucker Body Width Liver Fluke 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was supported by Project No. BOS2002-01978 of the DGICYT of the Spanish Ministry of Science and Technology, Madrid, the Red de Investigación de Centros de Enfermedades Tropicales-RICET (Project No. C03/04 of the Programme of Redes Tematicas de Investigación Cooperativa, FIS), Project No. PI030545 of FIS, Spanish Ministry of Health, Madrid, and Projects No. 03/113 and GV04B-125 of Conselleria de Empresa, Universidad y Ciencia, Valencia (Spain).

The technical collaboration of Lic. Myriam Fatehi and Dr. Marc Desquesnes (Bobo-Dioulasso, Burkina Faso) is acknowledged, along with the statistical collaboration of Dr. Mario Sendra and the grammatical collaboration of Ralph Wilk (Valencia, Spain).

References

  1. Adlard RD, Barker SC, Blair D, Cribb TH (1993) Comparison of the second internal transcribed spacer (ribosomal DNA) from populations and species of Fasciolidae (Digenea). Int J Parasitol 23:423–425CrossRefPubMedGoogle Scholar
  2. Agatsuma T, Terasaki K, Yang L, Blair D (1994) Genetic variation in the triploids of Japanese Fasciola species, and relationships with other species in the genus. J Helminthol 68:181–186PubMedCrossRefGoogle Scholar
  3. Akahane H, Harada Y, Oshima T (1970) Patterns of the variation of the common liver fluke (Fasciola sp.) in Japan: III. Comparative studies on the external form, size of egg and number of eggs in the uterus of fluke in cattle, goat and rabbit. Kisechugaku Zasshi 6:619–627Google Scholar
  4. Anonymous (2001) The proven solution for image analysis. Image-Pro Plus, Version 4.5 for Windows, Start-Up Guide. Media Cybernetics. Silver Spring, MDGoogle Scholar
  5. Bargues MD, Mas-Coma S (2005) Reviewing lymnaeid vectors of fasciolosis by ribosomal DNA sequence analyses. J Helminthol 79:257–267CrossRefPubMedGoogle Scholar
  6. Bargues MD, Artigas P, Jackiewicz M, Pointier JP, Mas-Coma S (2005) Ribosomal DNA ITS-1 sequence analysis of European stagnicoline Lymnaeidae (Gastropoda). In: Glöer P, Falkner G (Eds) Beiträge zur Süβwasser-Malakologie-Festschrift für Claus Meier-Brook und Hans D. Boeters, Heldia (Münchner Malakologische Mitteilungen), München, pp 57–68Google Scholar
  7. Bergeon P, Laurent M (1970) Différences entre la morphologie testiculaire de Fasciola hepatica et Fasciola gigantica. Rev Elev Med Vet Pays Trop 23:223–227PubMedGoogle Scholar
  8. Boray JC (1982) Fasciolosis. In: Hillyer GV, Hopla CE (Eds) Handbook Series in Zoonoses, Vol. III. CRC, Boca Raton-Florida, pp 71–88Google Scholar
  9. Chen MG, Mott KE (1990) Progress in assessment of morbidity due to Fasciola hepatica infection: a review of recent literature. Trop Dis Bull 87:R1–R38Google Scholar
  10. Cobbold TS (1855) Description of a new trematode worm (Fasciola gigantica). Edin N Phil J NS 2:262–266Google Scholar
  11. Dawes B, Hughes DL (1964) Fasciolosis: the invasive stages of Fasciola hepatica in mammalian host. Adv Parasitol 2:97–168PubMedCrossRefGoogle Scholar
  12. Esteban JG, Bargues MD, Mas-Coma S (1998) Geographical distribution, diagnosis and treatment of human fasciolosis: a review. Res Rev Parasitol 58:13–42Google Scholar
  13. Fletcher HL, Hoey EM, Orr N, Trudgett A, Fairweather I, Robinson MW (2004) The occurrence and significance of triploidy in the liver fluke, Fasciola hepatica. Parasitology 128:69–72CrossRefPubMedGoogle Scholar
  14. Hashimoto K, Watanobe C, Liu CX, Init I, Blair D, Ohnishi S, Agatsuma T (1997) Mitochondrial DNA and nuclear DNA indicate that the Japanese Fasciola species is F. gigantica. Parasitol Res 83:220–225CrossRefPubMedGoogle Scholar
  15. Hopkins DR (1992) Homing in on helminths. Am J Trop Med Hyg 46:626–634PubMedGoogle Scholar
  16. Itagaki T, Tsutsumi K (1998) Triploid form of Fasciola in Japan: genetic relationships between Fasciola hepatica and Fasciola gigantica determined by ITS-2 sequence of the nuclear rDNA. Int J Parasitol 28:777–781CrossRefPubMedGoogle Scholar
  17. Itagaki T, Tsutsumi KI, Ito K, Tsutsumi Y (1998) Taxonomic status of the Japanese triploid forms of Fasciola: comparison of mitochondrial ND1 and COI sequences with F. hepatica and F. gigantica. J Parasitol 84:445–448PubMedCrossRefGoogle Scholar
  18. Jackson HG (1921) A revision on the genus Fasciola with particular reference to F. gigantica (Cobbold) and F. nyanzi (Leiper). Parasitology 13:48–56CrossRefGoogle Scholar
  19. Kendall SB (1965) Relationships between the species of Fasciola and their molluscan hosts. Adv Parasitol 3:59–98PubMedCrossRefGoogle Scholar
  20. Kimura S, Shimizu A, Kawano J (1984) Morphological observation on liver fluke detected from naturally infected carabaos in the Philippines. S R Fac Agric Kobe Univ 16:353–357Google Scholar
  21. Looss A (1896) Recherches sur la faune parasitaire de l’Egypte, 1ère Partie. Mem Inst Egyptien 3:1–252Google Scholar
  22. Lotfy WM, El-Morshedy HN, El-Hoda MA, El-Tawila MM, Omar EA, Fara, HF (2002) Identification of the Egyptian species of Fasciola. Vet Parasitol 103:323–332CrossRefPubMedGoogle Scholar
  23. Mas-Coma S, Bargues MD, Esteban JG (1999a) Human Fasciolosis. In: Dalton JP, (Ed) Fasciolosis. CAB International, Wallingford, Oxon, UK, pp 411–434Google Scholar
  24. Mas-Coma S, Esteban JG, Bargues MD (1999b) Epidemiology of human fasciolosis: a review and proposed new classification. Bull WHO 77:340–346PubMedGoogle Scholar
  25. Mas-Coma S, Bargues MD, Valero MA, Fuentes MV (2003) Adaptation capacities of Fasciola hepatica and their relationships with human fasciolosis: from below sea level up to the very high altitude. In: Combes C, Jourdane J (Eds) Taxonomy, ecology and evolution of metazoan parasites. Perpignan University Press, Perpignan, pp. 81–123Google Scholar
  26. Mas-Coma S (2004a) Human fasciolosis. In: Cotruvo JA, Dufour A, Rees G, Bartram J, Carr R, Cliver DO, Craun GF, Fayer R, Gannon VPJ (Eds) World health organization (WHO), waterborne zoonoses: identification, causes and control. IWA Publishing, London, UK, pp 305–322Google Scholar
  27. Mas-Coma S (2004b) Human fasciolosis: epidemiological patterns in human endemic areas of South America, Africa and Asia. Southeast Asian J Trop Med Public Health 35:1–11Google Scholar
  28. Norusis JM (1994) SPSS advances statistics. SPSS, ChicagoGoogle Scholar
  29. Oshima T, Akahane H, Koyama H, Shimazu T, Harada Y (1968) Patterns of the variation of the common liver fluke (Fasciola sp.) in Japan II. A comparative study of the flukes from cattle and goat. Kisechugaku Zasshi 17:534–539Google Scholar
  30. Railliet A (1895) Sur une forme particulière de douve hépatique provenant du Sénégal. CR Soc Biol 47:338–340Google Scholar
  31. Rim HJ, Farag HF, Sornmani S, Cross JH (1994) Food-borne trematodes: ignored or emerging? Parasitol Today 10:207–209CrossRefGoogle Scholar
  32. Sahba GH, Arfaa F, Faramandian I, Jalali H (1972) Animal fasciolosis in Khuzestan, Southwestern Iran. J Parasitol 58:172–176CrossRefGoogle Scholar
  33. Sokal RR, Rohlf FJ (1981) Biometry. The principles and practice of Statistics in biological research, 2nd edn. In: WH Freeman (eds) Company. State University of New York at Stony Brook, New YorkGoogle Scholar
  34. Srimuzipo P, Komalamisra C, Choochote W, Jitpakdi A, Vanichthanakorn P, Keha P, Riyong D, Sukontasan K, Komalamisra N, Sukontasan K, Tippawangkosol P (2000) Comparative morphometry, morphology of egg and adult surface topography under light and scanning electron microscopies, and metaphase karyotype among three size-races of Fasciola gigantica in Thailand. Southeast Asian J Trop Med Public Health 31:366–373PubMedGoogle Scholar
  35. Terasaki K, Akahane H, Habe S (1982) The geographical distribution of common liver flukes (the genus Fasciola) with normal and abnormal spermatogenesis. Nippon Juigaku Zasshi 44:223–231PubMedGoogle Scholar
  36. Terasaki K, Noda Y, Shibahara T, Itagaki T (2000) Morphological comparisons and hypotheses on the origin of polyploids in parthenogenetic Fasciola sp. J Parasitol 86:724–729CrossRefPubMedGoogle Scholar
  37. Valero MA, De Renzi M, Mas-Coma S (1991) Ontongenic trajectories: a new approach in the study of parasite development, with special reference to Digenea. Res Rev Parasitol 56:13–20Google Scholar
  38. Valero MA, Marcos MD, Mas-Coma S (1996) A mathematical model for the ontogeny of Fasciola hepatica in the definitive host. Res Rev Parasitol 56:13–20Google Scholar
  39. Valero MA, Marcos MD, Fons R, Mas-Coma S (1998) Fasciola hepatica development in experimentally infected black rat, Rattus rattus. Parasitol Res 84:188–194CrossRefPubMedGoogle Scholar
  40. Valero MA, Marcos MD, Comes AM, Sendra M, Mas-Coma S (1999) Comparison of adult liver flukes from highland and lowland populations of Bolivian and Spanish sheep. J Helminthol 73:341–345PubMedCrossRefGoogle Scholar
  41. Valero MA, Panova M, Mas-Coma S (2001a) Developmental differences in the uterus of Fasciola hepatica between livestock liver fluke populations from Bolivian highland and European lowlands. Parasitol Res 87:337–342CrossRefPubMedGoogle Scholar
  42. Valero MA, Darce NA, Panova M, Mas-Coma S (2001b) Relationships between host species and morphometric patterns in Fasciola hepatica adults and eggs from the Northern Bolivian Altiplano hyperendemic region. Vet Parasitol 102:85–100CrossRefPubMedGoogle Scholar
  43. Valero MA, Panova M, Comes AM, Fons R, Mas-Coma S (2002) Patterns in size and shedding of Fasciola hepatica eggs by naturally and experimentally infected murid rodents. J Parasitol 88:308–313CrossRefPubMedGoogle Scholar
  44. Valero MA, Panova M,0 Mas-Coma S (2005) Phenotypic analysis of adults and eggs of Fasciola hepatica by computer image analysis system. J Helminthol 79:217–225Google Scholar
  45. Varma AK (1953) On Fasciola indica n. sp. with some observations on F. hepatica and F. gigantica. J Helminthol 27:185–198Google Scholar
  46. Watanabe S (1962) Fasciolosis of ruminants in Japan. Bull Off Int Epizoot 58:313–322Google Scholar
  47. World Health Organization (1995) Control of foodborne trematode infections. World Health Organization Tech Rep Ser 849. WHO, GenevaGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. V. Periago
    • 1
  • M. A. Valero
    • 1
  • M. Panova
    • 1
  • S. Mas-Coma
    • 1
  1. 1.Departamento de Parasitología, Facultad de FarmaciaUniversidad de ValenciaBurjassotSpain

Personalised recommendations