Parasitology Research

, Volume 97, Issue 3, pp 247–254 | Cite as

PCR-RFLP analysis: a promising technique for host species identification of blood meals from tsetse flies (Diptera: Glossinidae)

  • Stephan Steuber
  • Ahmed Abdel-Rady
  • Peter-Henning Clausen
Original Paper


A polymerase chain reaction with the restriction fragment length polymorphism (PCR-RFLP) method using universal primers complementary to the conserved region of the cytochrome b gene (cyt b) of the mitochondrion DNA (mtDNA) of vertebrates was applied to the identification of the origin of blood meals in tsetse flies. Blood samples from ten potential tsetse hosts of the family bovidae (cattle, water buffalo, red buffalo, waterbuck, springbok, goat, sheep, sable antelope, oryx and dik-dik) were included in this study. Sites for appropriate restriction endonucleases cuts were chosen by pairwise alignment of the amplified 359 bp fragments. A flow chart of endonucleases digestion using three restriction enzymes (e.g. TaqI, AluI and HindII) for the unequivocal identification of the respective bovid species was developed. A number of additional non-specific DNA fragments attributed to the co-amplification of cytochrome b pseudogenes were observed in some species (e.g. in red buffalo and dik-dik after digestion with AluI) but did not hamper assignment of bovid species. The detection rate of host DNA in tsetse by PCR-RFLP was 100, 80, 60 and 40% at 24, 48, 72 and 96 h after in vitro feeding, respectively. Identification of the last blood meal was possible even when tsetse had previously fed on different hosts.


Glossina Blood meal identification Bovidae Cytochrome b PCR-RFLP 



We wish to thank Prof. Dr. Klaus Eulenberger (Leipziger Zoo), Dr. Wolfram Rietschel (Zoologisch-Botanischer Garten Wilhelma Stuttgart), PD. Dr. Kai Fröhlich (Institute for Zoo and Wildlife Research Berlin) and Dr. Andreas Ochs (Zoologischer Garten Berlin) for providing blood samples from different bovid species used in the study. Special thanks to Mrs. Angelika Wiemann for excellent technical assistance. This work was funded by the Ständige Kommission für Forschung und wissenschaftlichen Nachwuchs (FNK) of the FU Berlin.


  1. Abdulmawjood A, Bülte M (2002) Identification of ostrich meat by restriction fragment length polymorphism (RFLP) analysis of cytochrome b gene. J Food Sci 67:1688–1691Google Scholar
  2. Bauer B, Wetzel H (1976) A new membrane for feeding Glossina morsitans westw (Diptera Glossinidae). Bull Entomol Res 65:563–565Google Scholar
  3. Bellagamba F, Moretti VM, Comincini S, Valfré F (2001) Identification of species in animal feedstuffs by polymerase chain reaction-restriction fragment length polymorphism analysis of mitochondrial DNA. J Agric Food Chem 49:3775–3781CrossRefPubMedGoogle Scholar
  4. Bensasson D, Zhang D-X, Hartl DL, Hewitt GM (2001) Mitochondrial pseudogenes evolution’s misplaced witnesses. Trends Ecol Evol 16:314–321CrossRefPubMedGoogle Scholar
  5. Boakye DA, Tang J, Truc P, Merriweather A, Unnasch TR (1999) Identification of bloodmeals in haematophagous Diptera by cytochrome B heteroduplex analysis. Med Vet Entomol 13:282–287CrossRefPubMedGoogle Scholar
  6. Branciari R, Nijman IJ, Plas ME, Di Antonio E, Lenstra JA (2000) Species origin of milk in Italian mozzarella and Greek feta cheese. J Food Prot 63:408–411PubMedGoogle Scholar
  7. Buntjer JB, Lenstra JA, Haagsma N (1995) Rapid species identification in meat by using satellite DNA probes. Z Lebensm Unters Forsch 201:577–582CrossRefPubMedGoogle Scholar
  8. Carrera E, Garcia T, Céspedes A, González I, Fernández A, Hernández PE, Martín R (1999) Salmon and trout analysis by PCR-RFLP for identity authentication. J Food Sci 64:410–413Google Scholar
  9. Céspedes A, García T, Carrera E, González I, Sanz B, Hernández PE, Martín R (1998) Identification of flatfish species using polymerase chain reaction (PCR) amplification and restriction analysis of the cytochrome b gene. J Food Sci 63:206–209Google Scholar
  10. Chikuni K, Ozutsumi K, Koishikawa T, Kato S (1990) Species identification of cooked meats by DNA hybridization assay. Meat Sci 27:119–128CrossRefGoogle Scholar
  11. Clausen P-H, Adeyemi I, Bauer B, Breloeer M, Salchow F, Staak C (1998) Host preferences of tsetse (Diptera Glossinidae) based on blood meal identifications. Med Vet Entomol 12:169–180CrossRefPubMedGoogle Scholar
  12. Ebbehoj KF, Thomsen PD (1991) Species differentiation of heated meat products by DNA hybridization. Meat Sci 30:221–234CrossRefGoogle Scholar
  13. Higuchi R (1989) Simple and rapid preparation of samples for PCR. In: Erlich HA (ed) PCR technology, principles and applications for DNA amplification. Stockton Press, NY, pp 31–38Google Scholar
  14. Kirstein F, Gray JS (1996) A molecular marker for the identification of the zoonotic reservoirs of lyme borreliosis by analysis of blood meal in its European vector Ixodes ricinus. Appl Environ Microbiol 62:4060–4065PubMedGoogle Scholar
  15. Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci 86:6196–6200PubMedGoogle Scholar
  16. Lanzilao I, Ebranati E, Burgalassi F, Cioni L, Fani R, Cianti L, Fancelli S, Settimelli M (2003) Species identification in dairy products by PCR-RFLP technique. Industrie Aliment 42:278–282Google Scholar
  17. Lenstra JA, Buntjer JB, Janssen FW (2001) On the origin of meat—DNA techniques for species identification in meat products. Vet Sci Tomorrow 2:1–13Google Scholar
  18. Meyer R, Candrian U, Lüthy J (1994) Detection of pork meat products by polymerase chain reaction. J AOAC Int 77:617–622PubMedGoogle Scholar
  19. Meyer R, Höfelein C, Lüthy J, Candrian U (1995) Polymerase chain reaction-restriction fragment length polymorphism analysis: a simple method for species identification in food. J AOAC Int 78:1542–1551PubMedGoogle Scholar
  20. Mukabana WR, Takken W, Knols BGJ (2002) Analysis of arthropod bloodmeals using molecular genetic markers. Trends Parasitol 18:505–509CrossRefPubMedGoogle Scholar
  21. Ngo KA, Kramer LD (2003) Identification of mosquito blood meals using polymerase chain reaction (PCR) with order-specific primers. J Med Entomol 40:215–222PubMedGoogle Scholar
  22. Parson W, Pegoraro K, Niederstätter H, Föger M, Steinlechner M (2000) Species identification by means of the cytochrome b gene. Int J Legal Med 114:23–28CrossRefPubMedGoogle Scholar
  23. Partis L, Croan D, Guo Z, Clark R, Coldham T, Murby J (2000) Evaluation of a DNA fingerprinting method for determining the species origin of meats. Meat Sci 54:369–376CrossRefGoogle Scholar
  24. Pereira SL, Baker AJ (2004) Low number of mitochondrial pseudogenes in the chicken (Gallus gallus) nuclear genome: implications for molecular inference of population history and phylogenetics. BMC Evol Biol 4:17CrossRefPubMedGoogle Scholar
  25. Rurangirwa FR, Minja SH, Musoke AJ, Nantulya VM, Grootenhuis J, Moloo SK (1986) Production and evaluation of specific antisera against sera of various vertebrate species for identification of blood meals of Glossina morsitans centralis. Acta Trop 43:379–389PubMedGoogle Scholar
  26. Russell VJ, Hold GL, Pryde SE, Rehbein H, Quinteiro J, Rey-Mendez M, Sotelo CG, Pérez-Martin RI, Santos AT, Rosa C (2000) Use of restriction fragment length polymorphism to distinguish between salmon species. J Agric Food Chem 48:2184–2188CrossRefPubMedGoogle Scholar
  27. Staak C, Allmang B, Kämpe U, Mehlitz D (1981) The complement fixation test for the species identification of blood meals from tsetse flies. Trop Med Parasitol 32:97–98Google Scholar
  28. Staak C, Kämpe U, Korkowski G (1986) Species identification of blood meals from tsetse flies (Glossinidae): Results 1979–1985. Trop Med Parasitol 37:59–60PubMedGoogle Scholar
  29. Stefos G, Argyrokastritis A, Bizelis I, Moatsou G, Anifantakis E, Rogdakis E (2004) Detection of bovine mitochondrial DNA specific sequences in Feta cheese and ovine yoghurt by PCR-RFLP. Milchwissenschaft 59:509–511Google Scholar
  30. Sun YL, Lin CS (2003) Establishment and application of a fluorescent polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method for identifying porcine, caprine and bovine meats. J Agric Food Chem 51:1771–1776CrossRefPubMedGoogle Scholar
  31. Torr SJ, Wilson PJ, Schofield S, Mangwiro TN, Akber S, White BN (2001) Application of DNA markers to identify the individual-specific hosts of tsetse feeding on cattle. Med Vet Entomol 15:78–86CrossRefPubMedGoogle Scholar
  32. Vincze T, Posfai J, Roberts RJ (2003) NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res 31:3688–3691CrossRefPubMedGoogle Scholar
  33. Weitz B (1960) Feeding habits of bloodsucking arthropods. Exp Parasitol 9:63–82CrossRefGoogle Scholar
  34. Weitz B (1963) The feeding habits of Glossina. Bull World Health Organ 28:711–729PubMedGoogle Scholar
  35. Wolf C, Rentsch J, Hübner P (1999) PCR-RFLP analysis of mitochondrial DNA: a reliable method for species identification. J Agric Food Chem 47:1350–1355CrossRefPubMedGoogle Scholar
  36. Zhang D-X, Hewitt GM (1996) Nuclear integrations: challenges for mitochondrial DNA markers. Trends Ecol Evol 11:247–251CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Stephan Steuber
    • 1
  • Ahmed Abdel-Rady
    • 2
  • Peter-Henning Clausen
    • 2
  1. 1.Federal Office of Consumer Protection and Food SafetyBerlinGermany
  2. 2.Institute for Parasitology and International Animal HealthFreie Universität Berlin, Königsweg 67BerlinGermany

Personalised recommendations