Parasitology Research

, Volume 96, Issue 5, pp 326–330

Cryptosporidium infection impairs growth and muscular protein synthesis in suckling rats

  • Aline Topouchian
  • Nathalie Kapel
  • Christiane Larue-Achagiotis
  • Laurence Barbot
  • Daniel Tomé
  • Jean-Gérard Gobert
  • Jean-François Huneau
Original Paper

Abstract

This study aimed to explore the metabolic consequences of cryptosporidiosis in an acute experimental model both at the peak of infection and after parasite clearance. Four-day-old suckling rats were infected with 106 oocysts of Cryptosporidium parvum . At the peak of infection (day 8 PI), C. parvum resulted in a dramatic reduction both in nutrient intake (−50%) and body weight (16.3±5.2 vs 27.3±1.0 g, P<0.01) with a decrease in both lean body mass and adipose tissue. Muscular fractional and absolute synthesis rate were reduced (−15 and −55%, respectively). After parasite clearance (day 17 PI), body weight remained reduced in formerly infected animals (37.8±8.0 vs 47.8±4.2 g, P<0.01) whereas nutrient intake normalized and fractional synthesis rate slightly increased (+22%) compared to controls. Overall, our results show that the impact and consequences of cryptosporidiosis are far greater than generally appreciated, leading to major malnutrition in suckling rats.

Keywords

Cryptosporidiosis Neonatal rat model Protein energy malnutrition Growth retardation 

References

  1. Alcantara CS, Yang CH, Steiner TS, Barrett LJ, Lima AA, Chappell CL, Okhuysen PC, White AC Jr, Guerrant RL (2003) Interleukin-8, tumor necrosis factor-alpha, and lactoferrin in immunocompetent hosts with experimental and Brazilian children with acquired cryptosporidiosis. Am J Trop Med Hyg 68:325–328PubMedGoogle Scholar
  2. Barbot L, Windsor E, Rome S, Tricottet V, Reynes M, Topouchian A, Huneau JF, Gobert JG, Tome D, Kapel N (2003) Intestinal peptide transporter PepT1 is over-expressed during acute cryptosporidiosis in suckling rats as a result of both malnutrition and experimental parasite infection. Parasitol Res 89:364–370PubMedGoogle Scholar
  3. Breuille D, Rose F, Arnal M, Melin C, Obled C (1994) Sepsis modify the contribution of different organs to whole-body protein synthesis in rats. Clin Sci (Lond) 86:663–669Google Scholar
  4. Capet C, Kapel N, Huneau JF, Magne D, Laikuen R, Tricottet V, Benhamou Y, Tome D, Gobert JG (1999) Cryptosporidium parvum infection in suckling rats: impairment of mucosal permeability and Na(+)-glucose cotransport. Exp Parasitol 91:119–125CrossRefPubMedGoogle Scholar
  5. Casemore DP (1990) Epidemiological aspects of human cryptosporidiosis. Epidemiol Infect 104:1–28PubMedGoogle Scholar
  6. Checkley W, Gilman RH, Epstein LD, Suarez M, Diaz JF, Cabrera L, Black RE, Sterling CR (1997) Asymptomatic and symptomatic cryptosporidiosis: their acute effect on weight gain in Peruvian children. Am J Epidemiol 145:156–163PubMedGoogle Scholar
  7. Checkley W, Epstein LD, Gilman RH, Black RE, Cabrera L, Sterling CR (1998) Effects of Cryptosporidium parvum infection in Peruvian children: growth faltering and subsequent catch-up growth. Am J Epidemiol 148:497–506PubMedGoogle Scholar
  8. Dillingham RA, Lima AA, Guerrant RL (2002) Cryptosporidiosis: epidemiology and impact. Microbes Infect 4:1059–1066CrossRefPubMedGoogle Scholar
  9. Fayer R, Morgan U, Upton SJ (2000) Epidemiology of Cryptosporidium: transmission, detection and identification. Int J Parasitol 30:1305–1322CrossRefPubMedGoogle Scholar
  10. Garlick PJ, McNurlan MA, Preedy VR (1980) A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochem J 192:719–723PubMedGoogle Scholar
  11. Golden MH, Waterlow JC, Picou D (1977) Protein turnover, synthesis and breakdown before and after recovery from protein-energy malnutrition. Clin Sci Mol Med 53:473–477PubMedGoogle Scholar
  12. Guerrant DI, Moore SR, Lima AA, Patrick PD, Schorling JB, Guerrant RL (1999) Association of early childhood diarrhea and cryptosporidiosis with impaired physical fitness and cognitive function four-seven years later in a poor urban community in northeast Brazil. Am J Trop Med Hyg 61:707–713PubMedGoogle Scholar
  13. James WP (1972) Protein synthesis and breakdown and amino acid catabolism in protein-calorie malnutrition. Proc Nutr Soc 31:225–231PubMedGoogle Scholar
  14. Kyriazakis I, Tolkamp BJ, Hutchings MR (1998) Towards a functional explanation for the occurrence of anorexia during parasitic infections. Anim Behav 56: 265–274CrossRefPubMedGoogle Scholar
  15. Lacroix S, Mancassola R, Naciri M, Laurent F (2001) Cryptosporidium parvum-specific mucosal immune response in C57BL/6 neonatal and gamma interferon-deficient mice: role of tumor necrosis factor alpha in protection. Infect Immun 69:1635–1642CrossRefPubMedGoogle Scholar
  16. Molbak K, Andersen M, Aaby P, Hojlyng N, Jakobsen M, Sodemann M, da Silva AP (1997) Cryptosporidium infection in infancy as a cause of malnutrition: a community study from Guinea-Bissau, west Africa. Am J Clin Nutr 65:149–152PubMedGoogle Scholar
  17. Mosier DA, Oberst RD (2000) Cryptosporidiosis. A global challenge. Ann N Y Acad Sci 916:102–111PubMedGoogle Scholar
  18. Topouchian A, Kapel N, Huneau JF, Barbot L, Magne D, Tome D, Gobert JG (2001) Impairment of amino-acid absorption in suckling rats infected with Cryptosporidium parvum. Parasitol Res 87:891–896PubMedGoogle Scholar
  19. Topouchian A, Huneau JF, Barbot L, Rome S, Gobert JG, Tome D, Kapel N (2003) Evidence for the absence of an intestinal adaptive mechanism to compensate for C. parvum-induced amino acid malabsorption in suckling rats. Parasitol Res 91:197–203CrossRefPubMedGoogle Scholar
  20. Turk DE (1974) Intestinal parasitism and nutrient absorption. Fed Proc 33:106–111PubMedGoogle Scholar
  21. Wykes LJ, Fiorotto M, Burrin DG, Del Rosario M, Frazer ME, Pond WG, Jahoor F (1996) Chronic low protein intake reduces tissue protein synthesis in a pig model of protein malnutrition. J Nutr 126:1481–1488PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Aline Topouchian
    • 1
  • Nathalie Kapel
    • 1
    • 2
  • Christiane Larue-Achagiotis
    • 3
  • Laurence Barbot
    • 1
    • 2
  • Daniel Tomé
    • 3
  • Jean-Gérard Gobert
    • 1
    • 2
  • Jean-François Huneau
    • 3
  1. 1.Laboratoire de Biologie Animale et Parasitaire, Faculté des Sciences Pharmaceutiques et BiologiquesUniversité René DescartesParisFrance
  2. 2.Service de Coprologie FonctionnelleGroupe-Hospitalier Pitié-SalpêtriéreParisFrance
  3. 3.UMR INRA/INA-PG Physiologie de la Nutrition et du Comportement AlimentaireInstitut National Agronomique Paris-GrignonParisFrance

Personalised recommendations