Parasitology Research

, Volume 96, Issue 6, pp 413–417 | Cite as

Prevalence and intensity of blood and intestinal parasites in a field population of a Mediterranean lizard, Lacerta lepida

  • L. Amo
  • J. A. Fargallo
  • J. Martínez-Padilla
  • J. Millán
  • P. López
  • J. Martín
Short Communication

Abstract

We describe the blood and intestinal parasites in the Ocellated lizard, Lacerta lepida, examining the factors that determine the prevalence and intensity of infection of haemogregarines, and the prevalence of coccidia and nematodes. In relation to haemogregarines, no juveniles were detected as being infected, whereas 71.7 % of adults were infected. The prevalence of infection was positively related to the size of the adults. There were no differences between seasons or sexes in the prevalence or intensity of infection in adults. There were no significant differences in the prevalence of infection by nematodes between ages or sexes, nor in relation to the size of adult lizards, but adult lizards excreting coccidian oocysts tend to be smaller. During the mating period, reproductive activities lead to a decrease in the body condition. However, neither the intensity of haemogregarine’s infection nor the prevalence of intestinal parasites was related to the lizards’ body condition.

References

  1. Amo L, López P, Martín J (2004) Prevalence and intensity of Haemogregarinid blood parasites in a population of the Iberian rock lizard, Lacerta monticola. Parasitol Res 94:290–293CrossRefPubMedGoogle Scholar
  2. Barnard SM, Upton SJ (1994) A veterinary guide to the parasites of reptiles, vol 1, Protozoa. Krieger, MalabarGoogle Scholar
  3. Campbell TW (1996) Haemoparasites. In: Mader DR (ed) Reptile medicine and surgery. WB Saunders, Philadelphia, pp 379–381Google Scholar
  4. Castilla AM, Bauwens D (1992) Habitat selection by the lizard Lacerta lepida in a Mediterranean oak forest. Herpetol J 2:27–30Google Scholar
  5. Castilla AM, Bauwens D, Llorente GA (1991) Diet composition of the lizard Lacerta lepida in central Spain. J Herpetol 25:30–36Google Scholar
  6. Caudell JN, Whittier J, Conover MR (2002) The effects of haemogregarine-like parasites on brown tree snakes (Boiga irregularis) and slatey-grey snakes (Stegonotus cucullatus) in Queensland, Australia. Inter Biodet Biodegrad 49:113–119CrossRefGoogle Scholar
  7. Cordero Del Campillo M, Castanon L, Reguera A (1994) Indice-catálogo de zooparásitos ibéricos. Secretariado de Publicaciones, Universidad de León, SpainGoogle Scholar
  8. Dawson RD, Bortolotti GR (1997) Are avian haematocrits indicate of condition? American kestrels as a model. J Wildl Manage 61:1297–1306Google Scholar
  9. Eisen RJ (2001) Absence of measurable malaria-induced mortality in western fence lizards (Sceloporus occidentalis) in nature: a 4-year study of annual and over-winter mortality. Oecologia 127:586–589CrossRefGoogle Scholar
  10. Fargallo JA, Blanco G, Potti J, Viñuela J (2001) Nestbox provisioning in a rural population of Eurasian Kestrels: breeding performance, nest predation and parasitism. Bird Study 48:236–244Google Scholar
  11. Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387PubMedGoogle Scholar
  12. Holmes J (1995) Population regulation: a complex of interactions. Wildlife Res 22:11–19Google Scholar
  13. Hudson PJ, Dobson AP, Newborn D (1998) Prevention of population cycles by parasite removal. Science 282:2256–2258CrossRefPubMedGoogle Scholar
  14. Klukowski M, Nelson CE (2001) Ectoparasite loads in free-ranging northern fence lizards, Sceloporus undulatus hyacinthinus: effects of testosterone and sex. Behav Ecol Sociobiol 49:289–295CrossRefGoogle Scholar
  15. Krebs CJ (1995) Population regulation. In Nierenberg WA (ed) Encyclopedia of environmental biology. Academic, San Diego, pp 183–202Google Scholar
  16. Lane TJ, Mader DR (1996) Parasitology. In Mader DR (ed) Reptile medicine and surgery. WB Saunders Company, Philadelphia , pp 185–202Google Scholar
  17. Levine ND (1982) Some corrections in haemogregarine (Apicomplexa: Protozoa) nomenclature. J Protozool 29:601–603PubMedGoogle Scholar
  18. Martín J, López P (1999) An experimental test of the costs of antipredatory refuge use in the wall lizard, Podarcis muralis. Oikos 84:499–505Google Scholar
  19. Melhorn H, Düwell D, Raether W (1992) Atlas de Parasitología Veterinaria. Grass (ed), SpainGoogle Scholar
  20. Merino S, Potti J (1995) High prevalence of hematozoa in nestings of a passerine species, the pied flycatcher (Ficedula hypoleuca). Auk 112:1041–1043Google Scholar
  21. Møller AP, Christe P, Lux E (1999) Parasitism, host immune function, and sexual selection. Q Rev Biol 74:3–20CrossRefPubMedGoogle Scholar
  22. O’Dwyer LH, Moço TC, Da Silva RJ (2004) Description of the gamonts of a small species of Hepatozoon sp. (Apicomplexa, Hepatozoidae) found in Crotalus durissus terrificus (Serpentes, Viperidae). Parasitol Res 92:110–112CrossRefPubMedGoogle Scholar
  23. Olsson M, Wapstra E, Madsen T, Silverin B (2000) Testosterone, ticks and travels: a test of the inmunocompetence-handicap hypothesis in free-ranging male sand lizards. Proc R Soc Lond B 267:2339–2343CrossRefGoogle Scholar
  24. Oppliger A, Celerier ML, Clobert J (1996) Physiological and behaviour changes in common lizards parasited by haemogregarines. Parasitol 113:433–438Google Scholar
  25. Oppliger A, Clobert J, Lecomte J, Lorenzon P, Boudjemadi K, John-Alder HB (1998) Environmental stress increases the prevalence and intensity of blood parasite infection in the common lizard Lacerta vivipara. Ecol Lett 1:129–138CrossRefGoogle Scholar
  26. Pacejka AJ, Gratton CM, Thompson CF (1998) Do potentially virulent mites affect house wren (Troglodytes aedon) reproductive success? Ecology 795:1797–1806Google Scholar
  27. Paperna I, Kremer-Mecabell T, Finkelman S (2002) Hepatozoon kisrae n. sp infecting the lizard Agama stellio is transmitted by the tick Hyalomma cf. Aegyptium. Parasite-J Soc Franc Parasitol 9:17–27Google Scholar
  28. Pérez-Mellado V (1998) Lacerta lepida (Daudin, 1802). In: Salvador A (ed) Reptiles. Fauna Ibérica, vol 10. Museo Nacional de Ciencias Naturales, CSIC, Madrid, pp 198–207Google Scholar
  29. Pérez-Tris J, Díaz JA, Tellería JL (2004) Loss of body mass under predation risk: cost of antipredator behaviour or adaptive-fit-for escape? Anim Behav 67:511–521CrossRefGoogle Scholar
  30. Price PW (1980) Evolutionary biology of parasites. Princenton University Press, PrincentonGoogle Scholar
  31. Roberts ML, Buchanan KL, Evans MR (2004) Testing the immunocompetence handicap hypothesis: a review of the evidence. Anim Behav 68:227–239CrossRefGoogle Scholar
  32. Roca V, Lluch J, Navarro P (1986) Contribución al conocimiento de la helmitofauna de los herpetos ibéricos. 1. Parásitos de Lacertidae: Lacerta lepida Daudin, 1802 y Podarcis hispanica Steindachner 1870. Rev Iber Parasitol 46:129–136Google Scholar
  33. Salvador A, Veiga JP, Martín J, López P, Abelenda M, Puerta M (1996) The cost of producing a sexual signal: testosterone increases the susceptibility of male lizards to ectoparasitic infestation. Behav Ecol 7:145–150Google Scholar
  34. Sanchez-Gumiel N, Zapatero Ramos LM, Castano Fernandez C, Gonzalez Santiago PM (1991) Description of Spinicauda dugesii sp. n. (Nematoda: Heterakidae) of Podarcis dugesii (Reptilia: Lacertidae) from Madeira Island. Folia Parasitol 38:183–186PubMedGoogle Scholar
  35. Sanchis V, Roig JM, Carretero MA, Roca V, Llorente GA (2000) Host-parasite relationships of Zootoca vivipara (Sauria: Lacertidae) in the Pyrenees (North Spain). Folia Parasitol 47:118–122PubMedGoogle Scholar
  36. Schall JJ (1996) Malarial parasites of lizards. Adv Parasitol 37:255–333PubMedGoogle Scholar
  37. Smallridge CJ, Bull CM (2000) Prevalence and intensity of the blood parasite Hemolivia mariae in a field population of the skink Tiquila rugosa. Parasitol Res 86:655–660PubMedGoogle Scholar
  38. Tokarz RR, Mcmann S, Seitz L, John-Alder H (1998) Plasma corticosterone and testosterone levels during the annual reproductive cycle of male brown anoles (Anolis sagrei). Physiol Zool 71:139–146PubMedGoogle Scholar
  39. Uller T, Olsson M (2003) Prenatal exposure to testosterone increases ectoparasite susceptibility in the common lizard (Lacerta vivipara). Proc R Soc Lond B 270:1867–1870CrossRefGoogle Scholar
  40. Van Riper CIII, Van Riper SG, Goff ML, Laird M (1986) The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol Monogr 56:327–344Google Scholar
  41. Veiga JP, Salvador A, Merino S, Puerta M (1998) Reproductive effort affects immune response and parasite infection in a lizard: a phenotypic manipulation using testosterone. Oikos 82:313–318Google Scholar
  42. Wintrobe MM (1991) Clinical haematology, 8th edn. Lea and Feiberger, PhiladelphiaGoogle Scholar
  43. Wozniak EJ, Kazacos KR, Telford SR, Mclaughlin GL (1996) Characterization of the clinical and anatomical pathological changes associated with Hepatozoon mocassini infections in unnatural reptilian hosts. Int J Parasitol 26:141–146CrossRefPubMedGoogle Scholar
  44. Zuk M (1996) Disease, endocrine-immune interactions, and sexual selection. Ecology 77:1037–1042Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • L. Amo
    • 1
  • J. A. Fargallo
    • 1
  • J. Martínez-Padilla
    • 2
  • J. Millán
    • 3
  • P. López
    • 1
  • J. Martín
    • 1
  1. 1.Departamento de Ecología EvolutivaMuseo Nacional de Ciencias Naturales, CSICMadridSpain
  2. 2.Centre for Ecology and Hydrology BanchoryScotlandUK
  3. 3.Empresa de Gestión MedioambientalConsejería de Medio AmbienteSevillaSpain

Personalised recommendations