Advertisement

Parasitology Research

, Volume 98, Issue 2, pp 167–175 | Cite as

Isospora suis: an experimental model for mammalian intestinal coccidiosis

  • H.-C. Mundt
  • A. Joachim
  • M. Becka
  • A. Daugschies
Original paper

Abstract

Piglets experimentally infected with 10,000 oocysts of Isospora suis in three identical trials (n=50) were examined clinically and coproscopically from 5 to 11 days post-infection (d.p.i.), weighed in weekly intervals until the fourth week of life and compared to age-matched asymptomatic controls (n=17). Furthermore, 17 infected piglets were histologically examined on days 5–14 p.i. Infected animals had a significantly lower weight gain than the controls and showed diarrhoea throughout, with maximum prevalence and intensity on 6 d.p.i. Half of the animals had diarrhoea for only 2 days or less. The number of diarrhoea days was negatively correlated with weight gain. Oocyst excretion started on 5 d.p.i. with peak prevalences and declined afterwards; a smaller peak was seen on 10 d.p.i. All animals excreted parasites at least once, and most of them excreted for 5–7 days. Oocyst excretion intensity paralleled the prevalence and ranged from 220 to 251,501 oocysts per gram of faeces (opg). Most samples contained 4×103 to 4×104 opg. The opg values were negatively correlated with faecal scores (samples with diarrhoea contained less oocysts) of the same day and the previous day. Histologically, necrosis followed by atrophy of the villi was most pronounced in the early stage of infection throughout the jejunum and ileum but declined thereafter. On 14 d.p.i., villous atrophy was still noticeable in the jejunum. Histology is difficult to quantify and requires large animal numbers, although the effects are visible for some time. Weight gain and faecal score can be affected by other factors than parasite infection. From the compiled data, we conclude that the established model is suitable to study piglet isosporosis with oocyst excretion being the most reliable parameter, although individual variations are considerable. A negative correlation between excretion and diarrhoea may be responsible for the difficulties in the detection of the parasite in field samples.

Keywords

Villous Atrophy Percentage Weight Gain Coccidiosis Toltrazuril Asymptomatic Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to Drs. V. Kalthoff and S. Wüstenberg for provision of data.

References

  1. Andersen FL, Lowder LJ, Hammond DM, Carter PB (1965) Antibody production in experimental Eimeria bovis infections in calves. Exp Parasitol 16:23–35CrossRefPubMedGoogle Scholar
  2. Bach U, Kalthoff V, Mundt HC, Popp A, Rinke M, Daugschies A, Lüttge B (2003) Parasitological and morphological findings in porcine isosporosis after treatment with symmetrical triazinones. Parasitol Res 91:27–33CrossRefPubMedGoogle Scholar
  3. Biester HE, Murray C (1934) Studies in infectious entertis of swine. VIII. Isospora suis n. sp. in Swine. J Am Vet Med Assoc 85:207–219Google Scholar
  4. Blagburn BL, Boosinger TR, Powe TA (1991) Experimental Isospora suis infections in miniature swine. Vet Parasitol 38:343–347PubMedCrossRefGoogle Scholar
  5. Christensen JPB, Henriksen SA (1994) Shedding of oocysts in piglets experimentally infected with Isospora suis. Acta Vet Scand 35:165–172PubMedGoogle Scholar
  6. Damryiasa IM, Bauer C (2004) Prevalence and age-depending occurrence of gastrointestinal protozoa infections in suckling piglets. DVG-Tagung: Aktuelles zur Diagnostik, Epidemiologie von Parasitosen bei Nutz-, Haus- & Heimtieren. Starnberg, GermanyGoogle Scholar
  7. Daugschies A, Mundt HC (2004) Experiences with a standardized infection model for clinical research on Isospora suis. VIIIth Int Coccidiosis Conf, Cairns, AustraliaGoogle Scholar
  8. Daugschies A, Akimaru M, Bürger HJ (1986) Experimentelle Eimeria bovis-Infektionen beim Kalb: 1. Parasitologische und klinische Befunde. Dtsch Tierarztl Wochenschr 93:393–397PubMedGoogle Scholar
  9. Daugschies A, Bürger HJ, Akimaru M (1997) Effects of experimental infection with Eimeria bovis on the balance of sodium, potassium and water in calves. Parasitol Int 46:159–169CrossRefGoogle Scholar
  10. del Castillo J, Dumas G, Villeneuve A, Martineau GP (1996) Individual Isospora suis oocyst excretions: diagnostic applications. Proc Int Pig Vet Soc Congr, Bologna, Italy, p 357Google Scholar
  11. Fiege N, Klatte D, Kollmann D, Zahner H, Bürger HJ (1992) Eimeria bovis in cattle: colostral transfer of antibodies and immune response to experimental infections. Parasitol Res 78:32–38PubMedCrossRefGoogle Scholar
  12. Friend SC, Stockdale PH (1980) Experimental Eimeria bovis infection in calves: a histopathological study. Can J Comp Med 44:129–140PubMedGoogle Scholar
  13. Harleman JH, Meyer RC (1984) Life cycle of Isospora suis in gnotobiotic and conventionalised piglets. Vet Parasitol 17:27–39PubMedCrossRefGoogle Scholar
  14. Harleman JH, Meyer RC (1985) Pathogenicity of Isospora suis in gnotobiotic and conventionalised piglets. Vet Rec 116:561–565PubMedCrossRefGoogle Scholar
  15. Henriksen SA, Christensen JPB (1992) Demonstration of Isospora suis oocysts in faecal samples. Vet Rec 131:443–444PubMedCrossRefGoogle Scholar
  16. Joachim A, Ruttkowski B, Zimmermann M, Daugschies A, Mundt HC (2004) Detection of Isospora suis (Biester and Murray 1934) in piglet faeces—comparison of microscopy and PCR. J Vet Med B 51:140–142CrossRefGoogle Scholar
  17. Kalthoff V (2001) Untersuchungen zur Wirksamkeit von Ponazuril (Bay Vi 9143) gegen Isopora suis beim Saugferkel. Vet Med Thesis, FU BerlinGoogle Scholar
  18. Koudela B, Kučerová S (1999) Role of acquired immunity and natural age resistance on course of Isospora suis coccidiosis in nursing piglets. Vet Parasitol 82:93–99PubMedCrossRefGoogle Scholar
  19. Koudela B, Kučerová S (2000) Immunity against Isospora suis in nursing piglets. Parasitol Res 86:861–863PubMedCrossRefGoogle Scholar
  20. Lindsay DS, Blagburn BL, Powe TA (1992) Enteric coccidial infections and coccidiosis in swine. Compend Contin Educ Pract Vet 14:698–702Google Scholar
  21. Martineau GP, del Castillo J (2000) Epidemiological, clinical and control investigations on field porcine coccidiosis: clinical, epidemiological and parasitological paradigms? Parasitol Res 86:834–837PubMedCrossRefGoogle Scholar
  22. Meyer C (1998) Vorkommen und Bedeutung von Isosopora suis Biester und Murray 1934 in intensiv geführten Ferkelerzeugerbetrieben und in der spezialisierten Ferkelaufzucht. Vet Med Thesis, Tierärztl Hochsch HannoverGoogle Scholar
  23. Meyer C, Joachim A, Daugschies A (1999) Occurrence of Isospora suis in larger piglet production units and on specialized piglet rearing farms. Vet Parasitol 82:277–284PubMedCrossRefGoogle Scholar
  24. Mundt HC, Daugschies A, Joachim A, Wüstenberg S (2003) Piglet coccidiosis update. Pig Prog 6:23–24Google Scholar
  25. Mundt HC, Cohnen A, Daugschies A, Joachim A, Prosl H, Schmäschke R, Westphal BJ (2005a) Occurrence of Isospora suis in Germany, Switzerland and Austria. J Vet Med B 52:93–97CrossRefGoogle Scholar
  26. Mundt HC, Daugschies A, Joachim A (2005b) Increased awareness of piglet coccidiosis. Pig Prog 1:22–25Google Scholar
  27. Nilsson O, Martinsson K, Persson E (1984) Epidemiology of porcine neonatal steatorrhoea in Sweden. 1. Prevalence and clinical significance of coccidial and rotaviral infections. Nord Vet Med 36:103–110PubMedGoogle Scholar
  28. Robinson Y, Morin M, Girard C, Higgins R (1983) Experimental transmission of intestinal coccidiosis to piglets: clinical, parasitological and pathological findings. Can J Comp Med 47:401–407PubMedGoogle Scholar
  29. Stuart BP, Lindsay DS, Ernst JV, Gosser HS (1980) Isospora suis enteritis in piglets. Vet Pathol 17:84–93PubMedGoogle Scholar
  30. Stuart BP, Gosser HS, Allen CB, Bedell DM (1982) Coccidiosis in swine: dose and age response to Isospora suis. Can J Comp Med 46:317–320PubMedGoogle Scholar
  31. Vítovec J, Koudela B (1987) Reduced pre-patent period in experimental infection of piglets with the coccidium Isospora suis. Folia Parasitol 34:10PubMedGoogle Scholar
  32. Vítovec J, Koudela B (1990) Double alteration of the small intestine in conventional and gnotobiotic piglets experimentally infected with the coccidium Isospora suis (Apicomplexa, Eimeriidae). Folia Parasitol 37:21–33PubMedGoogle Scholar
  33. Vitovec J, Koudela B, Kudweis M, Stepanek J, Smid B, Dvorak R (1991) Pathogenesis of experimental combined infections with Isospora suis and rotavirus in conventional and gnotobiotic piglets. J Vet Med B 38:215–226CrossRefGoogle Scholar
  34. Wieler LH, Ilieff A, Herbst W, Bauer C, Vieler E, Bauernfeind R, Failing K, Klös H, Wengert D, Baljer G, Zahner H (2001) Prevalence of enteropathogens in suckling and weaned piglets with diarrhoea in Southern Germany. J Vet Med B 48:151–159CrossRefGoogle Scholar
  35. Wüstenberg S (2003) Experimentelle Studien zur Wirksamkeit verschiedener Kokzidiostatika auf die Saugferkelkokzidiose. Vet Med Thesis, Univ. LeipzigGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • H.-C. Mundt
    • 1
  • A. Joachim
    • 2
  • M. Becka
    • 1
  • A. Daugschies
    • 3
  1. 1.Bayer HealthCare AGLeverkusenGermany
  2. 2.Department of Pathobiology, Institute of Parasitology and ZoologyUniversity of Veterinary Medicine ViennaViennaAustria
  3. 3.Institute of ParasitologyUniversity of LeipzigLeipzigGermany

Personalised recommendations