Parasitology Research

, Volume 95, Issue 1, pp 5–12

Borrelia burgdorferi infection prevalences in questing Ixodes ricinus ticks (Acari: Ixodidae) in urban and suburban Bonn, western Germany

Original Paper

Abstract

From March to October 2003, a total of 2,518 host-seeking Ixodes ricinus ticks (1,944 nymphs, 264 females, 310 males) were collected by blanket dragging at 45 sites all over the city area of Bonn, western Germany, to be checked for Borrelia burgdorferi infection. The collection sites included 20 private gardens, nine public recreational parks, the boundaries of 14 sylvatic suburban areas and two footpaths between suburban farmed fields. Generally, numbers of specimens collected along sylvatic suburban areas and at urban sites with dense tree populations were significantly higher than at the other collection sites. Out of 1,394 specimens (865 nymphs, 241 females, 288 males) that were randomly chosen for Borrelia analysis by a simple PCR, 250 (17.9 %) were found to be infected with B. burgdorferi sensu lato. While the infection prevalences varied significantly between females (26.6%), males (12.5%) and nymphs (17.3%), there were no striking differences between sylvatic and unwooded sites. A total of 92.8% of the ticks Borrelia-positive by the simple PCR were also positive in a diagnostic nested PCR. Using genospecies-specific oligonucleotide probes, single Borrelia genospecies infections (91.4%) could be assigned to B. afzelii (39.5%), B. garinii (27.9%), B. burgdorferi sensu stricto (15.6%) and B. valaisiana (8.6%) by DNA hybridization. Various combinations of double infections were observed in 4.3% of the infected ticks. Another 4.3% of the Borrelia infections were untypeable. The B. burgdorferi genospecies distribution in the city area was shown to be variable from site to site and, even more, it was distinct from rural collection sites near Bonn. This is ascribed to a different spectrum of reservoir hosts. Taking into account the infection prevalences of host-seeking ticks in the forested surroundings of Bonn, our study demonstrates that the risk of acquiring Lyme disease after a tick bite in urban/suburban areas is comparably as high as in woodlands outside of the city.

References

  1. Balmelli T, Piffaretti JC (1995) Association between different clinical manifestations of Lyme disease and different species of Borrelia burgdorferi sensu lato. Res Microbiol 146:329–340CrossRefPubMedGoogle Scholar
  2. Daniel M, Černý V, Dusbábek F, Honzáková E, Olejníček J (1977) Influence of microclimate on the life cycle of the common tick Ixodes ricinus (L.) in an open area in comparison with forest habitats. Folia Parasit 24:149–160Google Scholar
  3. Diza E, Papa A, Vezyri E, Tsounis S, Milonas I, Antoniadis A (2004) Borrelia valaisiana in cerebrospinal fluid. Emerg Infect Dis 10:1692–1693PubMedGoogle Scholar
  4. Dizij A, Kurtenbach K (1995) Clethrionomys glareolus, but not Apodemus flavicollis, acquires resistance to Ixodes ricinus L., the main European vector of Borrelia burgdorferi. Parasite Immunol 17:177–183PubMedGoogle Scholar
  5. Gern L, Estrada-Peña A, Frandsen F, Gray JS, Jaenson TGT, Jongejan F, Kahl O, Korenberg E, Mehl R, Nuttall PA (1998) European reservoir hosts of Borrelia burgdorferi sensu lato. Zentbl Bakteriol 287:196–204Google Scholar
  6. Guy EC, Farquhar RG (1991) Borrelia burgdorferi in urban parks. Lancet 338:253CrossRefGoogle Scholar
  7. Guy EC, Stanek G (1991) Detection of Borrelia burgdorferi in patients with Lyme disease by polymerase chain reaction. J Clin Pathol 44:610–611PubMedGoogle Scholar
  8. Hanincová K, Schäfer M, Etti S, Sewell H-S, Taragelová V, Ziak D, Lauda M, Kurtenbach K (2003a) Association of Borrelia afzelii with rodents in Europe. Parasitology 126:11–20CrossRefPubMedGoogle Scholar
  9. Hanincová K, Taragelová V, Koci J, Schäfer SM, Hails R, Ullmann AJ, Piesman J, Labuda M, Kurtenbach K (2003b) Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Appl Environ Microbiol 69:2825–2830CrossRefPubMedGoogle Scholar
  10. Hillyard P (1996) Ticks of north-west Europe—keys and notes for identification of species. Synopses of the British Fauna No. 52, Field Studies Council, ShrewsburyGoogle Scholar
  11. Hubálek Z, Halouzka J (1997) Distribution of Borrelia burgdorferi sensu lato genomic groups in Europe, a review. Eur J Epidemiol 13:951–957CrossRefPubMedGoogle Scholar
  12. Hubálek Z, Halouzka J (1998) Prevalence rates of Borrelia burgdorferi sensu lato in host seeking Ixodes ricinus ticks in Europe. Parasitol Res 84:167–172CrossRefPubMedGoogle Scholar
  13. Hubálek J, Halouzka J, Juricová Z (1993) Prevalence of Borrelia burgdorferi in Ixodes ricinus ticks from urban parks, a review. Folia Parasitol 40:236Google Scholar
  14. Jaenson TGT (1991) The epidemiology of Lyme borreliosis. Parasitol Today 7:39–45CrossRefPubMedGoogle Scholar
  15. Jaenson TGT, Tälleklint L (1992) Incompetence of roe deer as reservoirs of the Lyme borreliosis spirochete. J Med Entomol 29:813-817PubMedGoogle Scholar
  16. Junttila J, Peltomaa M, Soini H, Marjamäki M, Viljanen MK (1999) Prevalence of Borrelia burgdorferi in Ixodes ricinus ticks in urban recreational areas of Helsinki. J Clin Microbiol 37:1361–1365PubMedGoogle Scholar
  17. Kahl O, Gern L, Gray JS, Guy EC, Jongejan F, Kirstein F, Kurtenbach K, Rijpkema SGT, Stanek G (1998) Detection of Borrelia burgdorferi sensu lato in ticks: immunofluorescence assay versus polymerase chain reaction. Zentralbl Bakteriol 287:205–210PubMedGoogle Scholar
  18. Kampen H, Rötzel D, Kurtenbach K, Maier WA, Seitz HM (2004) Substantial rise in the prevalence of Lyme borreliosis spirochetes in a region of west Germany over a ten-years period. Appl Environ Microbiol 70:1576–1582CrossRefPubMedGoogle Scholar
  19. Kirstein F, Rijpkema S, Molkenboer M, Gray JS (1997) The distribution and prevalence of B. burgdorferi genospecies in Ixodes ricinus ticks in Ireland. Eur J Epidemiol 13:67–72CrossRefPubMedGoogle Scholar
  20. Kurtenbach K, Dizij A, Seitz HM, Margos G, Moter SE, Kramer MD, Wallich R, Schaible UE, Simon MM (1994) Differential immune responses to Borrelia burgdorferi in European wild rodent species influence spirochete transmission in Ixodes ricinus L. (Acari: Ixodidae). Infect Immun 62:5344–5352PubMedGoogle Scholar
  21. Kurtenbach K, Kampen H, Dizij A, Arndt S, Seitz HM, Schaible UE, Simon MM (1995) Infestation of rodents with larval Ixodes ricinus (Acari: Ixodidae) is an important factor in the transmission cycle of Borrelia burgdorferi s.l. in German woodlands. J Med Entomol 32:807–817PubMedGoogle Scholar
  22. Kurtenbach K, Carey D, Hoodless AN, Nuttall PA, Randolph SE (1998a) Competence of pheasants as reservoirs for Lyme disease spirochaetes. J Med Entomol 35:77–81PubMedGoogle Scholar
  23. Kurtenbach K, Peacey M, Rijpkema SGT, Hoodless AN, Nuttall PA, Randolph SE (1998b) Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl Environ Microbiol 64:1169–1174PubMedGoogle Scholar
  24. Kurtenbach K, De Michelis S, Sewell H-S, Etti S, Schäfer SM, Hails R, Collares-Pereira M, Santos-Reis M, Hanincová K, Labuda M, Bormane A, Donaghy M (2001) Distinct combinations of Borrelia burgdorferi sensu lato genospecies found in individual questing ticks from Europe. Appl Environ Microbiol 67:4926–4929CrossRefPubMedGoogle Scholar
  25. Kurtenbach K, De Michelis S, Sewell H-S, Etti S, Schäfer SM, Holmes E, Hails R, Collares-Pereira M, Santos-Reis M, Hanincová K, Labuda M, Bormane A, Donaghy M (2002a) The key roles of selection and migration in the ecology of Lyme borreliosis. Int J Microbiol 291 [Suppl 33]:152–154Google Scholar
  26. Kurtenbach K, Schäfer S, Sewell H-S, Peacey M, Hoodless A, Nuttall PA, Randolph SE (2002b) Differential survival of Lyme borreliosis spirochetes in ticks that feed on birds. Infect Immun 70:5893–5895CrossRefPubMedGoogle Scholar
  27. Liebisch A, Liebisch G (1997) Biologie und Ökologie der Zecken. In: Horst H (ed) Einheimische Zeckenborreliose (Lyme-Krankheit) bei Mensch und Tier, 3rd edn. Spitta, Balingen, pp 31–47Google Scholar
  28. Maiwald M, Hassler D, Zappe HA (1996) Epidemiologie und Prophylaxe zeckenübertragener Krankheiten. Allgemeinarzt 9:986–993Google Scholar
  29. Matuschka FR, Fischer P, Heiler M, Blümcke S, Spielman A (1992) Stage-associated risk of transmission of the Lyme disease spirochete by European Ixodes ticks. Parasitol Res 78:695–698PubMedGoogle Scholar
  30. Matuschka FR, Heiler M, Eiffert H, Fischer P, Lotter H, Spielman A (1993) Diversionary role of hoofed game in the transmission of Lyme disease spirochetes. Am J Trop Med Hyg 48:693–699PubMedGoogle Scholar
  31. Matuschka FR, Endepols S, Richter D, Ohlenbusch A, Eiffert H, Spielman A (1996) Risk of urban Lyme disease enhanced by the presence of rats. J Infect Dis 174:1108–1111PubMedGoogle Scholar
  32. Michalik J, Hofman T, Buczek A, Skoracki M, Sikora B (2003) Borrelia burgdorferi s.l. in Ixodes ricinus (Acari: Ixodidae) ticks collected from vegetation and small rodents in recreational parks of the city of Poznan. J Med Entomol 40:690–697PubMedGoogle Scholar
  33. Oehme R, Hartelt K, Backe H, Brockmann S, Kimmig P (2002) Foci of tick-borne diseases in southwest Germany. Int J Med Microbiol 291 [Suppl 33]:22–29Google Scholar
  34. Péter O, Bretz AG, Bee D (1995) Occurrence of different genospecies of Borrelia burgdorferi sensu lato in ixodid ticks of Valais, Switzerland. Eur J Epidemiol 11:463–464PubMedGoogle Scholar
  35. Picken RN, Cheng Y, Strle F, Picken MM (1996) Patient isolates of Borrelia burgdorferi sensu lato with genotypic and phenotypic similarities to strain 25015. J Infect Dis 174:1112–1115PubMedGoogle Scholar
  36. Pretzmann G, Radda A, Loew J (1964) Studien zur Ökologie von Ixodes ricinus L. in einem Endemiegebiet der Frühsommer-Meningoenzephalitis (FSME) im Bezirk Neunkirchen (Niederösterreich). Z Morphol Okol Tiere 4:393–413CrossRefGoogle Scholar
  37. Randolph SE (1994) Density-dependent acquired resistance to ticks in natural hosts, independent of concurrent infection with Babesia microti. Parasitology 108:413–419PubMedGoogle Scholar
  38. Rijpkema S, Nieuwenhuijs J, Franssen FFJ, Jongejan F (1994) Infection rates of Borrelia burgdorferi in different instars of Ixodes ricinus ticks from the Dutch North Sea island of Ameland. Exp Appl Acarol 20:381–385CrossRefGoogle Scholar
  39. Rijpkema SGT, Molkenboer MJC, Schouls LM, Jongejan F, Schellekens JFP (1995) Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus ticks by characterization of the amplified intergenic spacer region between 5S and 23S rRNA genes. J Clin Microbiol 33:3091–3095PubMedGoogle Scholar
  40. Schaarschmidt D, Oehme R, Kimmig P, Hesch R-DD, Englisch S (2001) Detection and molecular typing of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks and in different patient samples from southwest Germany. Eur J Epidemiol 17:1067–1074CrossRefPubMedGoogle Scholar
  41. Schwartz BS, Hofmeister E, Glass GE, Arthur RR, Childs JE, Cranfield MR (1991) Lyme borreliosis in an inner-city park in Baltimore. Am J Public Health 81:803–804PubMedGoogle Scholar
  42. Schwartz I, Wormser GP, Schwartz JJ, Cooper D, Weissensee P, Gazumyan A, Zimmermann E, Goldberg NS, Bittker S, Campbell GL, Pavia C (1992) Diagnosis of early Lyme disease by polymerase chain reaction amplification and culture of skin biopsies from erythema migrans lesions. J Clin Microbiol 30:3082–3088PubMedGoogle Scholar
  43. Steere AC (2001) Lyme disease. N Engl J Med 345:115–125.CrossRefPubMedGoogle Scholar
  44. Strle F, Picken RN, Cheng Y, Cimperman J, Maraspin V, Lotric-Furlan S, Ruzic-Sabljic E, Picken MM (1997) Clinical findings for patients with Lyme borreliosis caused by Borrelia burgdorferi sensu lato with genotypic and phenotypic similarities to strain 25015. Clin Infect Dis 25:273–280PubMedGoogle Scholar
  45. Tälleklint L, Jaenson TGT (1993) Maintenance by hares of European Borrelia burgdorferi in ecosystems without rodents. J Med Entomol 30:273–276PubMedGoogle Scholar
  46. Telford SR III, Mather TN, Moore SI, Wilson ML, Spielman A (1988) Incompetence of deer as reservoirs of the Lyme disease spirochete. Am J Trop Med Hyg 39:105–109PubMedGoogle Scholar
  47. Van Dam AP, Kuiper H, Vos K, Widjojokusumo A, de Jongh BM, Spanjaard L, Ramselaar ACP, Kramer MD, Dankert J (1993) Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin Infect Dis 17:708–717PubMedGoogle Scholar
  48. Walter G, Liebisch A (1980) Untersuchungen zur Biologie und Verbreitung von Zecken (Ixodoidea, Ixodidae) in Norddeutschland. III. Ixodes ricinus (Linnaeus 1758). Z Angew Zool 67:449–476Google Scholar
  49. Wang G, Van Dam AP, Le Fleche A (1997) Genetic and phenotypic analysis of Borrelia valaisiana sp. nov. (Borrelia genomic group VS116 and M19). Int J Syst Bacteriol 47:926–932PubMedGoogle Scholar
  50. World Health Organization (1995) Workshop on Lyme borreliosis diagnosis and surveillance. Warsaw, Poland, 20–22 June 1995. WHO unpublished document WHO/CDS/VPH95.141Google Scholar
  51. Zappe HA, Hassler D, Oehme R, Stutzke O, Maiwald A (2002) The value of antibiotic prophylaxis and the risk of Borrelia burgdorferi transmission after tick bite. Eur J Gen Pract 8:125Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Dorothea Maetzel
    • 1
  • Walter A. Maier
    • 1
  • Helge Kampen
    • 1
  1. 1.Institute for Medical ParasitologyUniversity of BonnBonnGermany

Personalised recommendations