Parasitology Research

, Volume 93, Issue 1, pp 41–50 | Cite as

A Mg-dependent ecto-ATPase is increased in the infective stages of Trypanosoma cruzi

  • José Roberto Meyer-FernandesEmail author
  • Jorge Saad-Nehme
  • Carlos E. Peres-Sampaio
  • Rodrigo Belmont-Firpo
  • Danielle F. R. Bisaggio
  • Luciana C. do Couto
  • André Luíz Fonseca de Souza
  • Angela H. S. C. Lopes
  • Thais Souto-Padrón
Original Paper


In this work, we describe the ability of living epimastigotes of Trypanosoma cruzi to hydrolyze extracellular ATP. In these intact parasites, there was a low level of ATP hydrolysis in the absence of any divalent metal (2.42±0.31 nmol Pi/h×108 cells). ATP hydrolysis was stimulated by MgCl2, and the Mg-dependent ecto-ATPase activity was 27.15±2.91 nmol Pi/h×108 cells. The addition of MgCl2 to the extracellular medium increased the ecto-ATPase activity in a dose-dependent manner. This stimulatory activity was also observed when MgCl2 was replaced by MnCl2, but not by CaCl2 or SrCl2. The apparent K m for Mg-ATP2− was 0.61 mM, and free Mg2+ did not increase the ecto-ATPase activity. This ecto-ATPase activity was insensitive to the inhibitors of other ATPase and phosphatase activities. To confirm that this Mg-dependent ATPase was an ecto-ATPase, we used an impermeant inhibitor, DIDS (4, 4′.diisothiocyanostylbene 2′-2′-disulfonic acid) as well as suramin, an antagonist of P2 purinoreceptors and inhibitor of some ecto-ATPases. These two reagents inhibited the Mg2+-dependent ATPase activity in a dose-dependent manner. A comparison among the Mg2+-ecto-ATPase activities of the three forms of T. cruzi showed that the noninfective epimastigotes were less efficient at hydrolyzing ATP than the infective trypomastigote and amastigote stages.


Trypanosoma cruzi Ecto-ATPase Virulence 



We would like to acknowledge the excellent technical assistance of Fabiano Ferreira Esteves. This work was partially supported by grants from the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Programa de Núcleos de Excelência (PRONEX, grant 0885) and FUJB/UFRJ.


  1. Alexander J, Russel DG (1992) The interaction of Leishmania species with macrophages. Adv Parsitol 31:175–254Google Scholar
  2. Asai T, Miura S, Sibley LD, Okabayashi H, Takeushi T (1995) Biochemical and molecular characterization of nucleoside triphosphate hydrolase isozymes from the parasitic protozoan Toxoplasma gondii. J Biol Chem 270:11391–11397PubMedGoogle Scholar
  3. Aurivillius M, Hansen OC, Lazrek MBS, Bock E, Öbrink B (1990) The cell adhesion molecule Cell-CAM 105 is an ecto-ATPase and a member of the immunoglobulin superfamily. FEBS Lett 264:267–269CrossRefPubMedGoogle Scholar
  4. Barbacci E, Filippini A, De Cesaris P, Ziparo E (1996) Identification and characterization of an ecto-ATPase activity in rat Sertoli cells. Biochem Biophys Res Commun 222:273–279PubMedGoogle Scholar
  5. Barros FS, De Menezes LF, Pinheiro AAS, Silva EF, Lopes AHCS, De Souza W, Meyer-Fernandes JR (2000) Ectonucleotide diphosphohydrolase activities in Entamoeba histolytica. Arch Biochem Biophys 375:304–314PubMedGoogle Scholar
  6. Bermudes D, Peck KR, Afifi MA, Beckers CJ, Joiner KA (1994) Tandemly repeated genes encode nucleoside triphosphate hydrolase isoforms secreted into the parasitophorous vacuole of Toxoplasma gondii. J Biol Chem 269:29252–29260PubMedGoogle Scholar
  7. Bernardes CF, Meyer-Fernandes JR, Saad-Nehme J, Peres-Sampaio CE, Vannier-Santos MA, Vercesi AF (2000) Effects of 4,4′-diisothyocyanostilbene-2,2′-disulfonic acid on Trypanosoma cruzi proliferation and Ca(2+) homeostasis. Int J Biochem Cell Biol 32:519–527PubMedGoogle Scholar
  8. Berrêdo-Pinho M, Peres-Sampaio CE, Chrispim PPM, Belmont-Firpo R, Dos Passos Lernos A,Martiny A, Vannier-Santos MA, Meyer-Fernandes JR (2001) A Mg-dependent ecto-ATPase in Leishmania amazonensis and its possible role in adenosine acquisition and virulence. Arch Biochem Biophys 391:16–24PubMedGoogle Scholar
  9. Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A 85:7972–7976PubMedGoogle Scholar
  10. Caruso-Neves C, Meyer-Fernandes JR, Saad-Nehme J, Lopes AG (1998a) Osmotic modulation of the ouabain-sensitive (Na++K+) ATPase from malpighian tubules of Rhodnius prolixus. Z Naturforsch C 53:911–917Google Scholar
  11. Caruso-Neves C, Meyer-Fernandes JR, Saad-Nehme J, Proverbio F, Marín R, Lopes AG (1998b) Ouabain-insensitive Na(+)-ATPase activity of Malpighian tubules from Rhodnius prolixus. Comp Biochem Physiol B 119:807–811CrossRefPubMedGoogle Scholar
  12. Chen L, Watanabe T, Watanabe H, Sendo F (2001) Neutrophil depletion exacerbates experimental Chagas’ disease in BALB/c, but protects C57BL/6 mice through modulating the Th1/Th2 dichotomy in different directions. Eur J Immunol 31:265–275CrossRefPubMedGoogle Scholar
  13. Cheung PH, Luo W, Qiu Y, Zhang X, Earley K, Millirons P, Lin S-H (1993) Structure and function of C-CAM1. The first immunoglobulin domain is required for intercellular adhesion. J Biol Chem 268:24303–24310PubMedGoogle Scholar
  14. De Koning HP, Watson CJ, Sutcliffe L, Jarvis MS (2000) Differential regulation of nucleoside and nucelobase transporters in Crithidia fasciculata and Trypanosoma brucei brucei. Mol Biochem Parasitol 106:93–107CrossRefPubMedGoogle Scholar
  15. Dombrowski K, Ke Y, Brewer KA, Kapp JA (1998) Ecto-ATPase: an activation marker necessary for effector cell function. Immunol Rev 161:111–118PubMedGoogle Scholar
  16. Dos Passos Lemos A, Peres-Sampaio CE, Guimarães-Motta H, Silva JL, Meyer-Fernandes JR (2000) Effects of naturally occurring polyols and urea on mitochondrial F0F1ATPase. Z Naturforsch C 55:392–398PubMedGoogle Scholar
  17. Dubyak GR, El-Moatassim C (1993) Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol 34:C577–C606Google Scholar
  18. Dutra PML, Rodrigues CO, Jesus JB, Lopes AHCS, Souto-Padrón T, Meyer-Fernandes JR (1998) A novel ecto-phosphatase activity of Herpetomonas muscarum muscarum inhibited by platelet-activating factor. Biochem Biophys Res Commun 253:164–169CrossRefPubMedGoogle Scholar
  19. Dutra PML, Rodrigues CO, Romeiro A, Grillo LAM, Dias FA, Attias M, De Souza W, Lopes AHCS, Meyer-Fernandes JR (2000) Characterization of ectophosphatase activities in trypanosomatid parasites of plants. Phytopathology 90:1032–1038Google Scholar
  20. Dutra PML, Dias FA, Rodrigues CO, Romeiro A, Attias M, De Souza W, Lopes AHCS, Meyer-Fernandes JR (2001a) Platelet-activating factor modulates a secreted phosphatase activity of the trypanosomatid parasite Herpetomonas muscarum muscarum. Curr Microbiol 43:288–292PubMedGoogle Scholar
  21. Dutra PML, Dias FA, Santos MAA, Rodrigues CO, Romeiro A, Attias M, De Souza W, Lopes AHCS, Meyer-Fernandes JR (2001b) Secreted phosphatase activities in trypanosomatid parasites of plants modulated by platelet-activating factor. Phytopathology 91:408–414Google Scholar
  22. Dzhandzhugazyan K, Bock E (1993) Demonstration of (Ca2+-Mg2+)-ATPase activity of the neural cell adhesion molecule. FEBS Lett 336:279–283PubMedGoogle Scholar
  23. El-Moatassim C, Dornand J, Mani J-C (1992) Extracellular ATP and cell signaling. Biochim Biophys Acta 1134:31–34PubMedGoogle Scholar
  24. Fabiato A, Fabiato F (1979) Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 75:463–505Google Scholar
  25. Fernandes EC, Meyer-Fernandes JR, Silva-Neto MAC, Vercesi AE (1997) Trypanosoma brucei: ecto-phosphatase activity present on the surface of intact procyclic forms. Z Naturforsch C52:351–358Google Scholar
  26. Filippini A, Taffs RE, Agui T, Sitkovsky MV (1990) Ecto ATPase activity in cytolytic T-lymphocytes—protection from cytolytic effects of extracellular ATP. J Biol Chem 265:334–340PubMedGoogle Scholar
  27. Fredholm BB (1997) Purines and neutrophil leukocytes. Gen Pharmacol 28:345–350Google Scholar
  28. Furuya T, Zhong L, Meyer-Fernandes JR, Lu H-G, Moreno SNJ, Docampo R (1998) Ecto-protein tyrosine phosphatase activity in Trypanosoma cruzi infective stages. Mol Biochem Parasitol 92:339–348PubMedGoogle Scholar
  29. Glynn IM, Chappell JB (1946) A simple method for the preparation of 32P-labelled adenosine triphosphate of high specific activity. Biochem J 90:147–149Google Scholar
  30. Goding JW (2000) Ecto-enzymes: physiology meets pathology. J Leukoc Biol 67:285–311PubMedGoogle Scholar
  31. Gottlieb M, Dwyer DM (1983) Evidence for distinct 5′- and 3′-nucleotidase activities in the surface membrane fraction of Leishmania donovani promastigotes. Mol Biochem Parasitol 7:303–317PubMedGoogle Scholar
  32. Handa M, Guidotti G (1996) Purification and cloning of a soluble ATP-diphosphohydrolase (apyrase) from potato tubers (Solanum tuberosum). Biochem Biophys Res Commun 218:916–923PubMedGoogle Scholar
  33. Handman E, Goding JW (1985) The Leishmania receptor for macrophages is a lipid-containing glycoconjugate. EMBO J 4:329–336PubMedGoogle Scholar
  34. Heine P, Braun N, Heilbronn A, Zimmermann H (1999) Functional characterization of rat ecto-ATPase and ecto-ATP diphosphohydrolase after heterologous expression in CHO cells. Eur J Biochem 262:102–107PubMedGoogle Scholar
  35. Hourani SM, Chown JA (1989) The effects of some possible inhibitors of ectonucleotidases on the breakdown and pharmalogical effects of ATP in the guinea-pig urinary bladder. Gen Pharmacol 20:413–416PubMedGoogle Scholar
  36. Kirley TL (1997) Complementary DNA cloning and sequencing of the chicken muscle ecto-ATPase. Homology with the lymphoid cell activation antigen CD38. J Biol Chem 272:1076–1081PubMedGoogle Scholar
  37. Knowles AF (1988) Differential expression of ectoMg2+-ATPase and ectoCA2+-ATPase activities in human hepatoma cells. Arch Biochem Biophys 263:264–271PubMedGoogle Scholar
  38. Lemmens R, Vanduffel L, Teuchy H, Culic O (1996) Regulation of proliferation of LLC-MK2 cells by nucleosides and nucleotides: the role of ecto-enzymes. Biochem J 316:551–557PubMedGoogle Scholar
  39. Lemmens R, Vanduffel K, Kittel A, Beaudoin AR, Benrezzak O, Sévigny J (2000) Distribution, cloning, and characterization of porcine nucleoside triphosphate diphosphohydrolase-1. Eur J Biochem 267:4106–4114PubMedGoogle Scholar
  40. Lowry OH, Lopes J (1946) The determination of inorganic phosphate in the presence of labile phosphate esters. J Biol Chem 162:421–428Google Scholar
  41. Margolis RN, Schell MJ, Taylor P, Hubbard AL (1990) Hepatocyte plasma membrane ecto-ATPase (pp120/HA4) is a substrate for tyrosine kinase activity of the insulin receptor. Biochem Biophys Res Commun 166:562–566PubMedGoogle Scholar
  42. Martiny A, Vannier-Santos MA, Borges VM, Meyer-Fernandes JR, Asseruy J, Cunha e Silva NL, De Souza W (1996) Leishmania-induced tyrosine phosphorylation in the host macrophage and its implication to infection. Eur J Cell Biol 71:206–215PubMedGoogle Scholar
  43. Martiny A, Meyer-Fernandes JR, De Souza W, Vannier-Santos MA (1999) Altered tyrosine phosphorylation of ERK1 MAP kinase and other macrophage molecules caused by Leishmania amastigotes. Mol Biochem Parasitol 102:1–12PubMedGoogle Scholar
  44. Meyer-Fernandes JR (2002) Ecto-ATPases in protozoa parasites: looking for a function. Parasitol Int 51:299–303Google Scholar
  45. Meyer-Fernandes JR, Vieyra A (1988) Pyrophosphate formation from acetyl phosphate and orthophosphate: evidence for heterogeneous catalysis. Arch Biochem Biophys 266:132–141PubMedGoogle Scholar
  46. Meyer-Fernandes JR, Dutra PML, Rodrigues CO, Saad-Nehme J, Lopes AHCS (1997) Mg2+-dependent ecto ATPase activity in Leishmania tropica. Arch Biochem Biophys 341:40–46PubMedGoogle Scholar
  47. Meyer-Fernandes JR, Silva-Neto MA, Soares MD, Fernandes E, Vercesi AE, Oliveira MM (1999) Ecto-phosphatase activities on the cell surface of the amastigote forms of Trypanosoma cruzi. Z Naturforsch C 54:977–984PubMedGoogle Scholar
  48. Meyer-Fernandes JR, Lanz-Mendoza H, Gondim KC, Willott E, Wells MA (2000) Ectonucleotide diphosphohydrolase activities in hemocytes of larval Manduca sexta. Arch Biochem Biophys 382:152–159PubMedGoogle Scholar
  49. Ming M, Chuenkova M, Ortega-Barria E, Pereira MEA (1993) Mediation of Trypanosoma cruzi invasion by sialic acid on the host cell and trans-sialidase on the trypanosome. Mol Biochem Parasitol 59:243–252Google Scholar
  50. Nakaar V, Beckers CJM, Polotsky V, Joiner KA (1998) Basis for substrate specificity of the Toxoplasma gondii nucleoside triphosphate hydrolase. Mol Biochem Parasitol 97:209–220PubMedGoogle Scholar
  51. Petkova SB, Huang H, Factor SM, Pestell RG, Bouzahzah B, Jelicks LA, Weiss LM, Douglas SA, Wittner M, Tanowitz HB (2001) The role of endothelin in the pathogenesis of Chagas’ disease. Int J Parasitol 31:499–511Google Scholar
  52. Plesner L (1995) Ecto-ATPases: identities and functions. Int Rev Cytol 158:141–214PubMedGoogle Scholar
  53. Russel DG, Wilhem H (1986) The involvement of the major surface glycoprotein (GP63) of Leishmania promastigotes in the attachment to macrophages. J Immunol 136:2613–2630PubMedGoogle Scholar
  54. Saad-Nehme J, Bezerra AL, Fornells LAM, Silva JL, Meyer-Fernandes JR (1997) A contribution of the mitochondrial adenosinetriphosphatase inhibitor protein to the thermal stability of the F0F1-ATPase complex. Z Naturforsch C52:459–465Google Scholar
  55. Silber AM, Marcipar IS, Roodveldt C, Cabeza Mecker P, Laguens R, Marcipar AJ (2002) Trypanosoma cruzi: identificação of a galactose-binding protein that binds to cell surface of human erythrocytes and is involved in cell invasion by the parasite. Exp Parasitol 100:217–225CrossRefPubMedGoogle Scholar
  56. Smith TM, Kirley TL, Hennessey TM (1997) A soluble ecto-ATPase from Tetrahymena thermophila: purification and similarity to the membrane-bound ecto-ATPase of smooth muscle. Arch Biochem Biophys 337:351–359PubMedGoogle Scholar
  57. Sodré CL, Moreira BLM, Nobrega FB, Gadelha FR, Meyer-Fernandes JR, Dutra PML, Vercesi AE, Lopes AHCS, Scofano HM, Barrabin H (2000) Characterization of the intracellular Ca(2+) pools involved in the calcium homeostasis in Herpetomonas sp. promastigotes. Arch Biochem Biophys 380:85–91CrossRefPubMedGoogle Scholar
  58. Sorenson MM, Coelho HSL, Reuben JP (1986) Caffeine inhibition of calcium accumulation by the sarcoplasmic reticulum in mammalian skinned fibers. J Membr Biol 90:219–230PubMedGoogle Scholar
  59. Steinberg TH, Di Virgilio F (1991) Cell-mediated cytotoxicity: ATP as an effector and the role of a target cells. Curr Opin Immunol 3:71–75PubMedGoogle Scholar
  60. Stout JG, Strobel RS, Kirley TL (1995) Properties of and proteins associated with the extracellular ATPase of chicken gizzard smooth muscle. A monoclonal antibody study. J Biol Chem 270:11845–11850PubMedGoogle Scholar
  61. Tanowitz HB, Kirchoff LV, Simon D, Morris SA, Weiss LM, Wittner M (1992) Chagas’ disease. Clin Microbiol Rev 5:400–419PubMedGoogle Scholar
  62. Van Belle H (1976) Alkaline phosphatase. I. Kinetics and inhibition by levamisole of purified isoenzymes from humans. Clin Chem 22:972–976PubMedGoogle Scholar
  63. Véscovi EG, Soncini FC, Groisman EA (1996) Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84:165–174PubMedGoogle Scholar
  64. Wang TF, Guidotti G (1996) CD39 is an ecto-(Ca2+, Mg2+)-apyrase. J Biol Chem 271:9898–9901PubMedGoogle Scholar
  65. Warren L (1960) Metabolism of Schizotripanum cruzi Chagas. I. Effect of culture, age and substrate concentrations on respiratory rate. J Parasitol 46:529–539Google Scholar
  66. Weisman GA, Turner JT, Fedan JS (1996) Structure and function of P2 purinocepters. J Pharmacol Exp Ther 277:1–9PubMedGoogle Scholar
  67. Westfall TD, Kennedy C, Sneddon P (1997) The ecto-ATPase inhibitor ARL 67156 enhances parasympathetic neurotransmission in the guinea-pig urinary bladder. Eur J Pharmacol 329: 169–173PubMedGoogle Scholar
  68. Yagi K, Nishino I, Eguchi M, Kitagawa M, Miura Y, Mizoguchi T (1994) Involvement of ecto-ATPase as an ATP receptor in the stimulatory effect of extracellular ATP on NO release in bovine aorta endothelial cells. Biochem Biophys Res Commun 203:1237–1243CrossRefPubMedGoogle Scholar
  69. Zanovello P, Bronte V, Rosato A, Pizzo P, Di Virgilio F (1990) Responses of mouse lymphocytes to extracellular ATP. II. Extracellular ATP causes cell type-dependent lysis and DNA fragmentation. J Immunol 145:1545–1550PubMedGoogle Scholar
  70. Zhong L, Lu H-G, Moreno SNL, Docampo R (1998) Tyrosine phosphate hydrolysis of host proteins by Trypanosoma cruzi is linked to cell invasion. FEMS Microbiol Lett 161:15–20PubMedGoogle Scholar
  71. Ziganshin AU, Ziganshina LE, King BF, Burnstock G (1995) Characteristics of ecto-ATPase of Xenopus oocytes and the inhibitory actions of suramin on ATP breakdown. Pflügers Arch 429:412–418Google Scholar
  72. Zimmermann H (1999) Two novel families of ectonucleotidases: molecular structures, catalytic properties and a search for function. Trends Pharmacol Sci 20:231–236PubMedGoogle Scholar
  73. Zimmermann H, Beaudoin AR, Bollen M, Goding JW, Guidotti G, Kirley TL, Robson SC, Sano K (2000) Proposed nomenclature for two novel nucleotide hydrolysing enzyme families expressed on the cell surface. In: Vanduffel L, Lemmens R (eds) Ecto-ATPases and related ectonucleotidases. Shaker, Maastricht, pp 1–8Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • José Roberto Meyer-Fernandes
    • 1
    Email author
  • Jorge Saad-Nehme
    • 1
  • Carlos E. Peres-Sampaio
    • 1
  • Rodrigo Belmont-Firpo
    • 1
  • Danielle F. R. Bisaggio
    • 2
  • Luciana C. do Couto
    • 2
  • André Luíz Fonseca de Souza
    • 1
  • Angela H. S. C. Lopes
    • 2
  • Thais Souto-Padrón
    • 2
  1. 1.Departamento de Bioquímica Médica, Instituto de Ciências BiomédicasUniversidade Federal do Rio de JaneiroRio de Janeiro Brazil
  2. 2.Instituto de Microbiologia Prof. Paulo de Góes CCSUniversidade Federal do Rio de Janeiro Rio de JaneiroBrazil

Personalised recommendations