Advertisement

Parasitology Research

, Volume 92, Issue 4, pp 347–351 | Cite as

Polymerase chain reaction for detection of patent infections of Echinococcus granulosus (“sheep strain”) in naturally infected dogs

  • Saša Štefanić
  • Block S. Shaikenov
  • Peter Deplazes
  • Anke Dinkel
  • Paul R. Torgerson
  • Alexander MathisEmail author
Rapid Communication

Abstract

Polymerase chain reaction (PCR) for the identification of eggs of the tapeworm Echinococcus granulosus (“sheep strain”) was evaluated with primers derived from mitochondrial sequences. Specificity of these primers was confirmed by investigating DNA of other strains of E. granulosus and of 14 helminth species which inhabit the intestines of dogs. This PCR assay was used to investigate 131 purged dogs from Kazakhstan. Eighteen dogs harboured Echinococcus worms, ten of them in mixed infections with Taenia spp. Coproantigen detection was positive in 15 and taeniid eggs could be recovered from 13 of these specimens. Eight of the egg-containing samples were positive in the PCR for E. granulosus and four in a Echinococcus multilocularis -specific PCR revealing one mixed infection. Egg-containing faeces from two dogs harbouring both Taenia spp. and Echinococcus spp. were negative in both PCRs. The combination of egg isolation and PCR will also be of value in epidemiological studies when investigating environmental samples.

Keywords

Polymerase Chain Reaction Echinococcus Echinococcus Granulosus Cystic Echinococcosis Echinococcus Multilocularis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We greatly acknowledge the financial support of INTAS (grant nos. 01 500 and 01 505) and of the Swiss National Science Foundation (SCOPES programme, grant no. 7KKPJO65622). This work represents the dissertation of S. Štefanić, veterinarian.

References

  1. Abbasi I, Branzenburg A, Campos-Ponce M, Abdel Hafez SK, Raoul F, Craig PS, Hamburger J (2003) Copro-diagnosis of Echinococcus granulosus infection in dogs by amplification of a newly identified repeated DNA sequence. Am J Trop Med Hyg 69:324–330PubMedGoogle Scholar
  2. Allan J, Craig PS, Gracie Noval J, Mencos F, Liu D, Wang Y, Wen H, Zhou P, Stringer R, Rogan M, Zeyhle E (1992) Coproantigen detection for immunodiagnosis of echinococcosis and taeniasis in dogs and humans. Parasitology 104:347–356PubMedGoogle Scholar
  3. Bowles J, Blair D, McManus DP (1995) A molecular phylogeny of the genus Echinococcus. Parasitology 110:317–328PubMedGoogle Scholar
  4. Cabrera M, Canova S, Rosenzvit M, Guarnera E (2002) Identification of Echinococcus granulosus eggs. Diagn Microbiol Infect Dis 44:29–34CrossRefPubMedGoogle Scholar
  5. Celi FS, Zenilman ME, Shuldiner AR (1993) A rapid and versatile method to synthesise internal standards for competitive PCR. Nucleic Acids Res 21:1047PubMedGoogle Scholar
  6. Christofi G, Deplazes P, Christofi N, Tanner I, Economides P, Eckert J (2002) Screening of dogs for Echinococcus granulosus coproantigen in a low endemic situation in Cyprus. Vet Parasitol 104:299–306CrossRefPubMedGoogle Scholar
  7. Craig PS, Macpherson CN, Nelson GS (1986) The identification of eggs of Echinococcus by immunofluorescence using a specific anti-oncospheral monoclonal antibody. Am J Trop Med Hyg 35:152–158PubMedGoogle Scholar
  8. Deplazes P, Gottstein B, Eckert J, Jenkins DJ, Ewald D, Jimenez-Palacios S (1992) Detection of Echinococcus coproantigens by enzyme-linked immunosorbent assay in dogs, dingoes and foxes. Parasitol Res 78:303–308Google Scholar
  9. Deplazes P, Dinkel A, Mathis A (2003) Molecular tools for studies on the transmission biology of Echinococcus multilocularis. Parasitology (in press)Google Scholar
  10. Dinkel A, von Nickisch-Rosenegk M, Bilger B, Merli M, Lucius R, Romig T (1998) Detection of Echinococcus multilocularis in the definitive host: coprodiagnosis by PCR as an alternative to necropsy. J Clin Microbiol 36:1871–1876PubMedGoogle Scholar
  11. Eckert J, Deplazes P (2003) Biological, epidemiological and clinical aspects of echinococcosis: a zoonoses of increasing concern. Clin Microbiol Rev (in press)Google Scholar
  12. Eckert J, Schantz PM, Gasser RB, Torgerson PR, Bessonov AS, Movsessian SO, Thakur A, Grimm F, Nikogossian MA (2001a) Geographic distribution and prevalence. In: Eckert J, Gemmell MA, Meslin F-X, Pawlowski Z (eds) WHO/OIE manual on echinococcosis in humans and animals: a public health problem of global concern. Office International des Epizooties, Paris, pp 100–142Google Scholar
  13. Eckert J, Deplazes P, Craig PS, Gemmell MA, Gottstein B, Heath D, Jenkins DJ, Kamiya M, Lightowlers M (2001b) Echinococcosis in animals: clinical aspects, diagnosis and treatment. In: Eckert J, Gemmell MA, Meslin F-X, Pawlowski Z (eds) WHO/OIE Manual on echinococcosis in humans and animals: a public health problem of global concern. Office International des Epizooties, Paris, pp 72–99Google Scholar
  14. Fraser A, Elayoubi F, Craig PS (2002) Detection of cestode infections in definitive hosts: present status and future advances. In: Craig P, Pawlowski Z (eds) Cestode zoonoses: echinococcosis and cysticercosis, an emergent and global problem. IOS, Amsterdam, pp 157–175Google Scholar
  15. Malgor R, Nonaka N, Basmadjian I, Sakai H, Carambula B, Oku Y, Carmona C, Kamiya M (1997) Coproantigen detection in dogs experimentally and naturally infected with Echinococcus granulosus by a monoclonal antibody-based enzyme-linked immunosorbent assay. Int J Parasitol 27:1605–1612CrossRefPubMedGoogle Scholar
  16. Mathis A, Deplazes P (2002) Role of PCR-DNA detection of Echinococcus multilocularis. In: Craig P, Pawlowski Z (eds) Cestode zoonoses: echinococcosis and cysticercosis, an emergent and global problem. IOS, Amsterdam, pp 195–204Google Scholar
  17. Mathis A, Deplazes P, Eckert J (1996) Improved test system for PCR-based specific detection of Echinococcus multilocularis eggs. J Helminthol 70:219–222PubMedGoogle Scholar
  18. O’Neill SL, Giordano R, Colbert AME, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 89:2699–2702PubMedGoogle Scholar
  19. Schantz PM, Chai J, Craig PS, Eckert J, Jenkins DJ, Macpherson CNL, Thakur A (1995) Epidemiology and control of hydatid disease. In: Thompson RCA, Lymbery AJ (eds) Echinococcus and hyatid disease. CAB International, Wallingford, Oxford, 233–331Google Scholar
  20. Stieger C, Hegglin D, Schwarzenbach G, Mathis A, Deplazes P (2002) Spatial and temporal aspects of urban transmission of Echinococcus multilocularis. Parasitology 124:631–640Google Scholar
  21. Thompson RCA, McManus DP (2002) Towards a taxonomic revision of the genus Echinococcus. Trends Parasitol 18:452–457CrossRefPubMedGoogle Scholar
  22. Torgerson PR, Budke CM (2003) Echinococcosis—an international public health challenge. Res Vet Sci 74:191–202CrossRefPubMedGoogle Scholar
  23. Torgerson PR, Shaikenov BS, Baitursinov KK, Abdybekova AM (2002) The emerging epidemic of echinococcosis in Kazakhstan. Trans R Soc Trop Med Hyg 96:124–128PubMedGoogle Scholar
  24. Torgerson PR, Karaeva RR, Corkeri N, Abdyjaparov TA, Kuttubaev OT, Shaikenov BS (2003) Human cystic echinococcosis in Kyrgystan: an epidemiological study. Acta Trop 85:51–61CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Saša Štefanić
    • 1
  • Block S. Shaikenov
    • 2
  • Peter Deplazes
    • 1
  • Anke Dinkel
    • 3
  • Paul R. Torgerson
    • 1
  • Alexander Mathis
    • 1
    Email author
  1. 1.Institute of ParasitologyUniversity of ZürichZürichSwitzerland
  2. 2.Institute of ZoologyKazakh Academy of SciencesAlmatyKazakhstan
  3. 3.Department of ParasitologyUniversity of HohenheimStuttgartGermany

Personalised recommendations