Ultrastructure of pigmented eyes in Onuphidae and Eunicidae (Annelida: Errantia: Eunicida) and its importance in understanding the evolution of eyes in Annelida

  • Tim von PalubitzkiEmail author
  • Günter Purschke
Original Paper


Annelida displays enormous eye and photoreceptor cell (PRC) diversity. In polychaetes, larval and adult eyes can be readily distinguished as the former are small, inverse and comprised of only two or three cells, and the latter are usually everse and multicellular. However, there are some species in which adult eyes are small, fewer in number or even absent. Recent studies show that two pairs of multicellular adult eyes belong to the ground pattern of a clade comprising Amphinomida/Sipuncula and Pleistoannelida with Errantia and Sedentaria. As ultrastructural data in one higher taxon of Errantia, Eunicida, are scarce or completely lacking for certain subgroups, we investigated the structure of pigmented eyes in three species of eunicidan bristle worms: Aponuphis bilineata (Onuphidae), Paucibranchia bellii (Eunicidae) and Leodice cf. torquata (Eunicidae). All had two pairs of pigmented eyes possessing typical adult structures: rhabdomeric PRCs (rPRC), pigmented supportive cells (PSCs) and additional cell types (in some species). The PSCs formed a shading pigment cup housing the sensory processes of the PRCs in everse orientation. Both Eunicidae species examined possess a lens-like structure formed by extensions of the PSCs as typical for members of Errantia, suggesting that lens-like structures formed by PSC processes were acquired in the stem lineage of Errantia and represent an autapomorphy of this clade. Our observations provide further evidence for the presence of two pairs of adult eyes in the ground pattern of Amphinomida/Sipuncula and Pleistoannelida.


Photoreceptor cells Adult eyes Larval eyes Polychaetes Pigmented supportive cells Converse eyes Inverse eyes 



We are grateful to the head of our department, Prof Dr. A. Paululat, Osnabrueck, for various kinds of support. Special thanks go to Dr. C. H. G. Müller, Greifswald, for providing additional material of P. bellii. Thanks are due to Mrs. K. Etzold and Mr. W. Mangerich, Osnabrueck, for various kinds of technical assistance, particularly for introducing TvP to electron microscopy techniques.

Compliance with ethical standards

We neither used endangered species nor collected animals from protected areas and we followed all applicable international, national and/or institutional guidelines for the care and use of animals.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Andrade SCS, Novo M, Kawauchi GY, Worsaae K, Pleijel F, Giribet G, Rouse GW (2015) Articulating “archiannelids”: phylogenomics and annelid relationships with emphasis on meiofaunal taxa. Mol Biol Evol 32:2860–2875PubMedCrossRefGoogle Scholar
  2. Arendt D (2003) Evolution of eyes and photoreceptor cell types. Int J Dev Biol 47:563–571PubMedGoogle Scholar
  3. Arendt D, Wittbrodt J (2001) Reconstructing the eyes of Urbilateria. Philos Trans R Soc Lond B 356:1545–1563CrossRefGoogle Scholar
  4. Arendt D, Tessmar K, de Campos-Baptista MIM, Dorresteijn A, Wittbrodt J (2002) Development of pigment-cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria. Development 129:1143–1154PubMedGoogle Scholar
  5. Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J (2004) Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306:869–871PubMedCrossRefGoogle Scholar
  6. Arendt D, Hausen H, Purschke G (2009) The “division of labour” model of eye evolution. Philos Trans R Soc Lond B 364:2809–2817CrossRefGoogle Scholar
  7. Backfisch B, Rajan VBV, Fischer RM, Lohs C, Arboleda E, Tessmar-Raible K, Raible F (2013) Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution. Proc Natl Acad Sci 110:193–198PubMedCrossRefGoogle Scholar
  8. Bartolomaeus T (1987) Ultrastruktur des Photoreceptors der Trochophora von Anaitides mucosa Oersted (Phyllodocidae, Annelida). Microfauna Marina 3:411–418Google Scholar
  9. Bartolomaeus T (1992) Ultrastructure of the photoreceptors in certain larvae of the Annelida. Microfauna Marina 7:191–214Google Scholar
  10. Bartolomaeus T (1993) Different photoreceptors in juvenile Ophelia rathkei (Annelida, Opheliida). Microfauna Marina 8:99–114Google Scholar
  11. Bocquet M (1977) Étude ultrastructurale de l’organe photorécepteur d’Odontosyllis denostoma S/F: Eusyllinae (Annèlide, Polychéte). J Ultrastruct Res 58:210–217CrossRefGoogle Scholar
  12. Budaeva N, Zanol J (2016) Eunicida Dales, 1962. In: Westheide W, Purschke G, Böggemann M (eds) Handbook of zoology online. A natural history of the phyla of the animal kingdom. Annelida: Polychaetes. De Gruyter, Berlin. Accessed 01 Feb 2019
  13. Budaeva N, Schepetov D, Zanol J, Neretina T, Willassen E (2016) When molecules support morphology: phylogenetic reconstruction of the family Onuphidae (Eunicida, Annelida) based on 16S rDNA and 18S rDNA. Mol Phylogenet Evol 94:791–801PubMedCrossRefGoogle Scholar
  14. Döring C, Gosda J, Tessmar-Raible K, Hausen H, Arendt D, Purschke G (2013) Evolution of clitellate phaosomes from rhabdomeric photoreceptor cells of polychaetes—a study in the leech Helobdella robusta (Annelida, Sedentaria, Clitellata). Front Zool 10:52PubMedPubMedCentralCrossRefGoogle Scholar
  15. Dorresteijn A (2005) Cell lineage and gene expression in the development of polychaetes. Hydrobiologia 535(536):1–22Google Scholar
  16. Dorsett DA, Hyde R (1968) The fine structure of the lens and photoreceptors of Nereis virens. Z Zellforsch Mikrosk Anat 85:243–255PubMedCrossRefGoogle Scholar
  17. Eakin RM (1963) Lines of evolution of photoreceptors. In: Mazia D, Tyler A (eds) General physiology of cell specialization. McGraw-Hill, New York, pp 393–425Google Scholar
  18. Eakin RM (1982) Continuity and diversity in photoreceptors. In: Westfall JA (ed) Visual cells in evolution. Raven, New York, pp 91–105Google Scholar
  19. Eakin RM, Brandenburger JL (1981) Fine structure of the eyes of Pseudoceros canadensis (Turbellaria, Polycladida). Zoomorphology 98:1–16CrossRefGoogle Scholar
  20. Eakin RM, Hermans CO (1988) Eyes. In: Westheide W, Hermans CO (eds) The ultrastructure of Polychaeta. Microfauna Marina 4:135–156Google Scholar
  21. Eakin RM, Martin GG, Reed CT (1977) Evolutionary significance of fine structure of archiannelid eyes. Zoomoorphologie 88:1–18CrossRefGoogle Scholar
  22. Ermack TH, Eakin RM (1976) Fine structure of the cerebral and pygidial ocelli in Chone ecaudata (Polychaeta: Sabellidae). J Ultrastruct Res 54:243–260CrossRefGoogle Scholar
  23. Fauvel P (1923) Polychètes errantes. Faune Fr 5:1–488Google Scholar
  24. Fernald RD (2004) Evolving eyes. Int J Dev Biol 48:701–705PubMedCrossRefGoogle Scholar
  25. Fischer A, Bröckelmann J (1966) Das Auge von Platynereis dumerilii (Polychaeta). Sein Feinbau im ontogenetischen und adaptiven Wandel. Z Zellforsch mikrosk Anat 71:217–244PubMedCrossRefGoogle Scholar
  26. Gehring WJ (2004) Historical perspective on the development and evolution of eyes and photoreceptors. Int J Dev Biol 48:707–717PubMedCrossRefGoogle Scholar
  27. Gehring WJ, Ikeo K (1999) Pax 6 mastering eye morphogenesis and eye evolution. Trends Genet 15:371–377PubMedCrossRefGoogle Scholar
  28. George JD, Hartmann-Schröder G (1985) Polychaetes: British amphinomida, spinterida and eunicida. In: Kermack DM, Barnes RSK (eds) Synopses of the British fauna, vol 32. Brill and Backhuys, London, pp 1–221Google Scholar
  29. Glasby CJ, Hutchings PA, Fauchald K, Paxton H, Rouse GW, Watson Russell C, Wilson RS (2000) Class polychaeta. In: Beesly PL, Ross GJB, Glasby CJ (eds) Polychaetes and allies: the southern synthesis. Fauna of Australia. Polychaeta, Myzostomida, Pogonophora, Echiura, Sipuncula, 4th edn. CSRO Publishing, Melbourne, pp 1–296Google Scholar
  30. Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267:1788–1792PubMedCrossRefGoogle Scholar
  31. Hartmann-Schröder G (1996) Annelida, Borstenwürmer, Polychaeta. In: Dahl F, Schumann H (eds) Die Tierwelt Deutschlands und der angrenzenden Meeresteile, vol 58, 2nd edn. Gustav Fischer, Jena, pp 1–648Google Scholar
  32. Helm C, Beckers P, Bartolomaeus T, Drukewitz SH, Kourtesis I, Weigert A, Purschke G, Worsaae K, Struck TH, Bleidorn C (2018) Convergent evolution of the ladder-like ventral nerve cord in Annelida. Front Zool 15:36PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hermans CO, Cloney RA (1966) Fine structure of the prostomial eyes of Armandia brevis (Polychaeta: Opheliidae). Z Zellforsch Mikrosk Anat 72:583–596PubMedCrossRefGoogle Scholar
  34. Hermans CO, Eakin RM (1974) Fine structure of the eyes of an alciopid polychaete, Vanadis tagensis (Annelida). Z Morph Tiere 79:245–267Google Scholar
  35. Jacklet JW, Colquhoun W (1983) Ultrastructure of photoreceptors and circadian pacemaker neurons in the eye of a gastropod, Bulla. J Neurocytol 12:673–696PubMedCrossRefGoogle Scholar
  36. Martínez A, Purschke G, Worsaae K (2017) Protodrilidae Hatschek, 1888. In: Westheide W, Purschke G (eds) Handbook of zoology. A natural history of the phyla of the animal kingdom. Annelida: polychaetes. De Gruyter, Berlin. Accessed Sept 19 2017
  37. Müller CHG, Hylleberg J, Michalik P (2014) Complex epidermal organs of Phascolion (Sipuncula): insights into the evolution of bimodal secretory cells in annelids. Acta Zool 96:343–374CrossRefGoogle Scholar
  38. Nilsson D-E (1989) Vision optics and evolution. Bioscience 39(5):298–307CrossRefGoogle Scholar
  39. Orrhage L (1995) On the innervation and homologues of the anterior end appendages of the Eunicea (Polychaeta), with a tentative outline of the fundamental constitution of the cephalic nervous system of the polychaetes. Acta Zool 76:229–248CrossRefGoogle Scholar
  40. Paxton H (2009) Phylogeny of Eunicida (Annelida) based on morphology of jaws. Zoosymposia 2:241–264Google Scholar
  41. Perrelet A (1970) The fine structure of the retina of the honey bee drone. Z Zellforsch Mikrosk Anat 108:530–562PubMedCrossRefGoogle Scholar
  42. Pietsch A, Westheide W (1985) Ultrastructural investigations of presumed photoreceptors as a means of discrimination and identification of closely related species of the genus Microphthalmus (Polychaeta, Hesionidae). Zoomorphology 105:256–276CrossRefGoogle Scholar
  43. Plachetzki DC, Serb JM, Oakley TH (2005) New insights into the evolutionary history of photoreceptor cells. Trends Ecol Evol 20:465–467PubMedCrossRefGoogle Scholar
  44. Purschke G (1992) Ultrastructural investigation of presumed photoreceptive organs in two Saccocirrus species (Polychaeta, Saccocirridae). J Morphol 211:7–21PubMedCrossRefGoogle Scholar
  45. Purschke G (2005) Sense organs in polychaetes (Annelida). Hydrobiologia 535(536):53–78Google Scholar
  46. Purschke G (2011) Sipunculid-like ocellar tubes in a polychaete, Fauveliopsis cf. adriatica (Annelida, Fauveliopsidae): implications for eye evolution. Invertebr Biol 130:115–128CrossRefGoogle Scholar
  47. Purschke G (2016) Annelida: basal groups and Pleistoannelida. In: Schmidt-Rhaesa A, Harzsch S, Purschke G (eds) Structure and evolution of invertebrate nervous systems. Oxford University Press, Oxford, pp 254–312Google Scholar
  48. Purschke G, Nowak KH (2015) Ultrastructure of pigmented eyes in Dorvilleidae (Annelida, Errantia, Eunicida) and their importance for understanding the evolution of eyes in polychaetes. Acta Zool 96:67–81CrossRefGoogle Scholar
  49. Purschke G, Arendt D, Hausen H, Müller MCM (2006) Photoreceptor cells and eyes in Annelida. Arthropod Struct Dev 35:211–230PubMedCrossRefGoogle Scholar
  50. Purschke G, Bleidorn C, Struck T (2014) Systematics, evolution and phylogeny of Annelida—a morphological perspective. Mem Mus Vic 71:247–269CrossRefGoogle Scholar
  51. Randel N, Bezares-Calderón LA, Gühmann M, Shahidi R, Jékely G (2013) Expression dynamics and protein localization of rhabdomeric opsins in Platynereis larvae. Integr Comp Biol 53:7–16PubMedPubMedCentralCrossRefGoogle Scholar
  52. Rhode B (1990) Eye structure of Ophryotrocha puerilis (Polychaeta: Dorvilleidae). J Morphol 205:147–154PubMedCrossRefGoogle Scholar
  53. Rhode B (1992) Development and differentiation of the eye in Platynereis dumerilii (Annelida, Polychaeta). J Morphol 212:71–85PubMedCrossRefGoogle Scholar
  54. Rhode B (1993) Larval and adult eyes in Capitella spec. I. (Annelida, Polychaeta). J Morphol 217:327–335PubMedCrossRefGoogle Scholar
  55. Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Döring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Møller OS, Müller CHG, Rieger V, Rothe BH, Stegner MEJ, Harzsch S (2010) Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool 7:29PubMedPubMedCentralCrossRefGoogle Scholar
  56. Rouse G, Pleijel F (2001) Polychaetes. Oxford University Press, Oxford, pp 1–354Google Scholar
  57. Salvini-Plawen LV, Mayr E (1977) On the evolution of eyes and photoreceptors. In: Hecht MK, Sterre WC, Wallace B (eds) Evolutionary biology, vol 10. Plenum, New York, pp 207–263CrossRefGoogle Scholar
  58. Singla GL (1975) Ultrastructure of the eye of Arctonoë vittata Grube (Polychaeta, Polynoidae). J Ultrastruct Res 52:333–339PubMedCrossRefGoogle Scholar
  59. Struck TH, Westheide W, Purschke G (2002) Progenesis in Eunicida (“Polychaeta”, Annelida)—separate evolutionary events? Evidence from molecular data. Mol Phylogenet Evol 25:190–199PubMedCrossRefGoogle Scholar
  60. Struck TH, Purschke G, Halanych KM (2006) Phylogeny of Eunicida (Annelida) and exploring data congruence using a partition addition bootstrap alteration (PABA) approach. Syst Biol 55:1–20PubMedCrossRefGoogle Scholar
  61. Struck TH, Golombek A, Weigert A, Franke FA, Westheide W, Purschke G, Halanych KM (2015) The evolution of annelids reveals two adaptive routes to the interstitial realm. Curr Biol 25:1993–1999PubMedCrossRefGoogle Scholar
  62. Suschenko D, Purschke G (2009) Ultrastructure of pigmented adult eyes in errant polychaetes (Annelida): implications for annelid evolution. Zoomorphology 128:75–96CrossRefGoogle Scholar
  63. Tilic E, Bartolomaeus T, Rouse GW (2016) Chaetal type diversity increases during evolution of Eunicida (Annelida). Org Div Evol 16:105–119CrossRefGoogle Scholar
  64. Vanfleteren JR, Coomans A (1976) Photoreceptor evolution and phylogeny. J Zool Syst Evol Res 14:157–168CrossRefGoogle Scholar
  65. Verger-Bocquet M (1983) Les organes photorécepteurs des syllidiens (Annèlides, Polychétes). Ann Biol 22:169–185Google Scholar
  66. Verger-Bocquet M (1992) Polychaeta: sensory structures. In: Harrison FW, Gardiner SL (eds) Microscopic anatomy of invertebrates. Annelida, 7th edn. Wiley-Liss, New York, pp 181–196Google Scholar
  67. Vodopyanov S, Purschke G (2017) Fine structure of the cerebral eyes in Flabelligera affinis (Annelida, Sedentaria, Cirratuliformia): new data prove the existence of typical converse annelid multicellular eyes in a sedentary polychaete. Zoomorphology 136:307–325CrossRefGoogle Scholar
  68. Weigert A, Bleidorn C (2016) Current status of annelid phylogeny. Org Div Evol 16:345–362CrossRefGoogle Scholar
  69. Westheide W (2019) Dinophilidae. In: Purschke G, Böggemann M, Westheide W (eds) Handbook of zoology annelida, vol 1. Annelida, basal groups and Pleistoannelida. Sedentaria I. De Gruyter, Berlin, pp 217–234Google Scholar
  70. Westheide W, Purschke G (1988) Organism processing. In: Higgins RP, Thiel H (eds) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, DC, pp 146–160Google Scholar
  71. Wilkens V, Purschke G (2009) Pigmented eyes, photoreceptor-like sense organs and central nervous system in the polychaete Scoloplos armiger (Orbiniidae, Annelida) and their phylogenetic importance. J Morphol 270:1296–1310PubMedCrossRefGoogle Scholar
  72. Yamaguchi E, Seaver EC (2013) The importance of larval eyes in the polychaete Capitella teleta: effects of larval eyes deletion on formation of the adult eye. Invertebr Biol 132:352–367CrossRefGoogle Scholar
  73. Yamamoto T, Tasaki K, Sugawara Y, Tonosaki A (1965) Fine structure of the octopus retina. J Cell Biol 25:345–359PubMedPubMedCentralCrossRefGoogle Scholar
  74. Zanol J, Halanych KM, Struck TH, Fauchald K (2010) Phylogeny of the bristle worm family Eunicidae (Eunicida, Annelida) and the phylogenetic utility of noncongruent 16S, COI and 18S in combined analyses. Mol Phylogenet Evol 55:660–676PubMedCrossRefGoogle Scholar
  75. Zavarzina EG (1987) New data on photoreceptor structure in Ophryotrocha dimorphica (Polychaeta, Eunicida). Dokl Akad Nauk SSSR 294:224–227 (in Russian) Google Scholar
  76. Zonana HV (1961) Fine structure of squid retina. Bull Johns Hopkins Hosp 109:185–205Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Zoology and Developmental Biology, Department of Biology and ChemistryUniversity of OsnabrückOsnabrückGermany
  2. 2.LippetalGermany

Personalised recommendations