Skip to main content
Log in

Histochemical characterization and connective fiber distribution of the cardiac outflow tract of pirarucu, Arapaima gigas (Schinz, 1822) (Osteoglossiformes, Arapaimidae)

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

The cardiac outflow tract (OFT) in teleosts is composed of a proximal short conus arteriosus and a distal well-developed bulbus arteriosus located between the ventricle and ventral aorta. The role of these anatomical components includes structural connections, prevention of blood backflow and blood pressure control, which are related to their histological and histochemical compositions. A previous study in the heart of the Amazonian species Arapaima gigas reported an unusual OFT arrangement among teleosts that has been found only in members of Osteoglossiformes so far. Thus, considering the wide structural variability of the teleostean OFT, the present study focuses on identifying glycosaminoglycans types and describing the distribution of collagen, elastic and reticular fibers in the conus arteriosus, conal valves, and bulbus arteriosus of A. gigas. Hearts from A. gigas between 327 and 4040 g weight were used. Collagen fibers were concentrated in regions that were regularly exposed to stress, as elastic fibers showed a broad distribution in all anatomical segments. Several fibrous connections between the conal valve leaflets and the conus arteriosus were observed, possibly acting as the primary connection form. The functions of the connective fibers in the valve leaflets and the bulbus are supported by an extracellular matrix rich in non-sulfated glycosaminoglycans. The complex reticular fiber network in the compact myocardium of the conus and the smooth muscle of the bulbus wall suggests a relevant role in support contraction of both muscle types, and in attachment and mobility of the conal valve leaflets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bancroft JD, Layton C (2013) Connective and mesenchymal tissues with their stains. In: Suvarna SK, Layton C, Bancroft JD (eds) Bancroft’s theory and practice of histological techniques. Churchill Livingstone Elsevier, Oxford, pp 187–214

    Chapter  Google Scholar 

  • Benjamin M, Norman D, Santer RM, Scarborough D (1983) Histological histochemical and ultrastructural studies on the bulbus arteriosus of the sticklebacks Gasterosteus aculeatus and Pungitius pungitius (Pisces: Teleostei). J Zool 200(3):325–346

    Article  Google Scholar 

  • Braun MH, Brill RW, Gosline JM, Jones DR (2003) Form and function of the bulbus arteriosus in yellowfin tuna (Thunnus albacares): dynamic properties. J Exp Biol 206(19):3327–3335

    Article  PubMed  Google Scholar 

  • Durán AC, Fernández B, Grimes AC, Rodríguez C, Arqué JM, Sans-Coma V (2008) Chondrichthyans have a bulbus arteriosus at the arterial pole of the heart: morphological and evolutionary implications. J Anat 213(5):97–606

    Google Scholar 

  • Durán AC, Reyes-Moya I, Fernández B, Rodríguez C, Sans-Coma V, Grimes AC (2014) The anatomical components of the cardiac outflow tract of the gray bichir Polypterus senegalus: their evolutionary significance. Zoology 117(6):370–376

    Article  PubMed  Google Scholar 

  • Evans DH, Harrie AC, Kozlowski MS (2003) Characterization of the effects of vasoactive substances on the bulbus arteriosus of the eel Anguilla rostrate. J Exp Zool Part A Comp Exp Biol 297(1):45–51

    Article  CAS  Google Scholar 

  • Farrell AP, Jones DR (1992) The heart. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish physiology Vol 12A: the cardiovascular system. Academic Press, New York, pp 1–88

    Google Scholar 

  • Farrell AP, Smith F (2017) Cardiac form function and physiology. In: Gamperl K, Gillis TE, Farrell AP et al (eds) Fish physiology Vol 36 the cardiovascular system: morphology control and function. Academic Press, Cambridge, pp 155–264

    Chapter  Google Scholar 

  • Gardinal MVB, Ruiz TFR, Moron SE, Oba Yoshioka ET, Uribe Gonçalves L, Franceschini Vicentini IB, Vicentini CA (2019) Heart structure in the Amazonian teleost Arapaima gigas (Osteoglossiformes Arapaimidae). J Anat 234:327–337

    Article  CAS  Google Scholar 

  • Garofalo F, Imbrogno S, Tota B, Amelio D (2012) Morpho-functional characterization of the goldfish (Carassius auratus L) heart. Comp Biochem Physiol Part A Mol Integr Physiol 163(2):215–222

    Article  CAS  Google Scholar 

  • Greer Walker M, Santer RM, Benjamin M, Norman D (1985) Heart structure of some deep-sea fish (Teleostei: Macrouridae). J Zool 205(1):75–89

    Article  Google Scholar 

  • Grimes AC (2015) The cardiac outflow tract of primitive fishes. In: Zaccone G, Dabrowski K, Hedrick MS, Fernandes JMO, Icardo JM (eds) Phylogeny anatomy and physiology of ancient fishes. CRC Press, Boca Raton, pp 151–178

    Chapter  Google Scholar 

  • Grimes AC, Durán AC, Sans-Coma V, Hami D Santoro MM, Torres M (2010) Phylogeny informs ontogeny: a proposed common theme in the arterial pole of the vertebrate heart. Evol Dev 12(6):552–567

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerrero A, Icardo JM, Durán AC, Gallego A, Domezain A, Colvée E, Sans-Coma V (2004) Differentiation of the cardiac outflow tract components in alevins of the sturgeon Acipenser naccarii (Osteichthyes, Acipenseriformes): implications for fish heart evolution. J Morphol 260:172–183

    Article  PubMed  Google Scholar 

  • Icardo JM (2006) Conus arteriosus of the teleost heart: dismissed but not missed. Anat Rec Part A Discov Mol Cell Evol Biol 288(8):900–908

    Article  Google Scholar 

  • Icardo JM (2017) Heart morphology and anatomy. In: Gamperl AK, Gillis TE, Farrell AP, Brauner CJ (eds) Fish physiology: the cardiovascular system morphology control and function. Academic Press, San Diego, pp 1–54

    Google Scholar 

  • Icardo JM, Colvee E, Cerra MC, Tota B (1999a) Bulbus arteriosus of the antarctic teleosts I. The white-blooded Chionodraco hamatus. Anat Rec 254(3):396–407

    Article  CAS  PubMed  Google Scholar 

  • Icardo JM, Colvee E, Cerra MC, Tota B (1999b) Bulbus arteriosus of the Antarctic teleosts II. The red-blooded Trematomus bernacchii. Anat Rec 256(2):116–126

    Article  CAS  PubMed  Google Scholar 

  • Icardo JM, Colvee E, Cerra MC, Tota B (2000a) The bulbus arteriosus of stenothermal and temperate teleosts: a morphological approach. J Fish Biol 57:121–135

    Article  Google Scholar 

  • Icardo JM, Colvee E, Cerra MC, Tota B (2000b) Light and electron microscopy of the bulbus arteriosus of the European eel (Anguilla anguilla). Cells Tissues Organs 167(2−3):184–198

    Article  CAS  PubMed  Google Scholar 

  • Icardo JM, Colvee E, Cerra MC, Tota B (2002a) Structure of the conus arteriosus of the sturgeon (Acipenser naccarii) heart I: the conus valves and the subendocardium. Anat Rec 267(1):17–27

    Article  PubMed  Google Scholar 

  • Icardo JM, Colvee E, Cerra MC, Tota B (2002b) The structure of the conus arteriosus of the sturgeon (Acipenser naccarii) heart: II. The myocardium the subepicardium and the conus-aorta transition. Anat Rec 268(4):388–398

    Article  PubMed  Google Scholar 

  • Icardo JM, Schib JL, Ojeda JL, Durán AC, Guerrero A, Colvee E, Sans-Coma V (2003) The conus valves of the adult gilthead seabream (Sparus auratus). J Anat 202(6):537–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Icardo JM, Guerrero A, Durán AC, Domezain A, Colvee E, Sans-Coma V (2004) The development of the sturgeon heart. Anat Embryol 208(6):439–449

    Article  PubMed  Google Scholar 

  • Junqueira LCU, Bignolas G, Brentani RR (1979) Picrosirius staining plus polarization microscopy a specific method for collagen detection in tissue sections. Histochem J 11(4):447–455

    Article  CAS  PubMed  Google Scholar 

  • Lorenzale M, López-Unzu MA, Fernández MC, Durán AC, Fernández B, Soto-Navarrete MT, Sans-Coma V (2017) Anatomical histochemical and immunohistochemical characterisation of the cardiac outflow tract of the silver arowana Osteoglossum bicirrhosum (Teleostei: Osteoglossiformes). Zoology 120:15–23

    Article  PubMed  Google Scholar 

  • Lorenzale M, López-Unzu MA, Rodríguez C, Fernández B, Durán AC, Sans-Coma V (2018) The anatomical components of the cardiac outflow tract of chondrichthyans and actinopterygians. Biol Rev 93(3):1604–1619

    Article  PubMed  Google Scholar 

  • Maldanis L, Carvalho M, Almeida, Freitas FI, Andrade JAFG, Nunes R, Rochitte CR, Poppi RJ, Freitas RO, Rodrigues F, Siljeström S, Lima AL, Galante D, Carvalho IS, Perez CA, Carvalho, Bettini J, Fernandez V, Xavier-Neto J (2016) Heart fossilization is possible and informs the evolution of cardiac outflow tract in vertebrates. eLIFE: Ecol Evol Biol 5:e14698

    Article  CAS  Google Scholar 

  • Moriyama Y, Ito F, Takeda H, Yano T, Okabe M, Kuraku S, Koshiba-Takeuchi K (2016) Evolution of the fish heart by sub/neofunctionalization of an elastin gene. Nat Commun 7:10397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons CW (1930) The conus arteriosus of fishes. Q J Microsc Sci 73:145–176

    Google Scholar 

  • Ross MH, Pawlina W (2011) Histology, a text and atlas. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Sans-Coma V, Gallego A, Muñoz-Chápuli R, De Andrés AV, Durán AC, Fernández B (1995) Anatomy and histology of the cardiac conal valves of the adult dogfish (Scyliorhinus canicula). Anat Rec 241(4):496–504

    Article  CAS  PubMed  Google Scholar 

  • Santer RM (1985) Morphology and innervation of the fish heart. Adv Anat Embryol Cell Biol 89:89–102

    Google Scholar 

  • Satchell GH, Jones MP (1967) The function of the conus arteriosus in the Port Jackson shark Heterodontus portusjacksoni. J Exp Biol 46(2):373–382

    CAS  PubMed  Google Scholar 

  • Schib JL, Icardo JM, Durán AC, Guerrero A, López D, Colvee E, Sans-Coma V (2002) The conus arteriosus of the adult gilthead seabream (Sparus auratus). J Anat 201(5):395–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senior HD (1907a) Note on the conus arteriosus of Megalops cyprinoides (Broussonet). Biol Bull 12(6):378–379

    Article  Google Scholar 

  • Senior HD (1907b) Teleosts with a conus arteriosus having more than one row of valves. Anat Rec 4:83–84

    Google Scholar 

  • Senior HD (1907c) The conus arteriosus in Tarpon atlanticus (Cuvier and Valenciennes). Biol Bull 12(3):146–151

    Article  Google Scholar 

  • Smith WC (1918) On the process of disappearance of the conus arteriosus in teleosts. Anat Rec 15(2):65–71

    Article  Google Scholar 

  • Taboga SR, Vidal CB (2003) Collagen fibers in human prostatic lesions: histochemistry and anisotropies. J Submicrosc Cytol Pathol 35(1):11–16

    CAS  PubMed  Google Scholar 

  • Ushiki T (2002) Collagen fibers reticular fibers and elastic fibers A comprehensive understanding from a morphological viewpoint. Arch Histol Cytol 65(2):109–126

    Article  PubMed  Google Scholar 

  • Weigert C (1898) Uber eine methode zur farbung elastischer fasern. Zentralbl Allg Pathol Anat 9:289–292

    Google Scholar 

  • Wolinsky H, Glagov S (1964) Structural basis for the static mechanical properties of the aortic media. Circ Res 14(5):400–413

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Laboratory of Morphology of Aquatic Organisms, Faculty of Science, Bauru Campus and the Laboratory of Microscopy and Microanalysis, IBILCE, UNESP São José do Rio Preto for technical assistance, and the Federal University of Tocantins, Araguaína Campus, for the heart samples. They also thank Maira Ferrari Munduruca for the manuscript review and the two anonymous reviewers for their helpful comments.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Níıvel Superior—Brasil (CAPES)—Finance Code 001 (Process No. 157704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Vitor Buzete Gardinal.

Ethics declarations

Conflict of interest

All the authors are aware of the policy and have no conflict of interest to declare.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All the procedures performed in this study were in accordance with the ethical standards of the Ethics Committee on Animal Use of the Federal University of Tocantins, Araguaína Campus (Proc. No. 231001.000872/2014-49).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gardinal, M.V.B., Ruiz, T.F.R., dos Santos, D.D. et al. Histochemical characterization and connective fiber distribution of the cardiac outflow tract of pirarucu, Arapaima gigas (Schinz, 1822) (Osteoglossiformes, Arapaimidae). Zoomorphology 138, 525–534 (2019). https://doi.org/10.1007/s00435-019-00459-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-019-00459-z

Keywords

Navigation