Advertisement

Histochemical characterization and connective fiber distribution of the cardiac outflow tract of pirarucu, Arapaima gigas (Schinz, 1822) (Osteoglossiformes, Arapaimidae)

  • Mario Vitor Buzete GardinalEmail author
  • Thalles Fernando Rocha Ruiz
  • Diego Dias dos Santos
  • Mateus Rossetto Vidal
  • Sandro Estevan Moron
  • Luiz Roberto Falleiros Junior
  • Sebastião Roberto Taboga
  • Irene Bastos Franceschini Vicentini
  • Carlos Alberto Vicentini
Original Paper
  • 42 Downloads

Abstract

The cardiac outflow tract (OFT) in teleosts is composed of a proximal short conus arteriosus and a distal well-developed bulbus arteriosus located between the ventricle and ventral aorta. The role of these anatomical components includes structural connections, prevention of blood backflow and blood pressure control, which are related to their histological and histochemical compositions. A previous study in the heart of the Amazonian species Arapaima gigas reported an unusual OFT arrangement among teleosts that has been found only in members of Osteoglossiformes so far. Thus, considering the wide structural variability of the teleostean OFT, the present study focuses on identifying glycosaminoglycans types and describing the distribution of collagen, elastic and reticular fibers in the conus arteriosus, conal valves, and bulbus arteriosus of A. gigas. Hearts from A. gigas between 327 and 4040 g weight were used. Collagen fibers were concentrated in regions that were regularly exposed to stress, as elastic fibers showed a broad distribution in all anatomical segments. Several fibrous connections between the conal valve leaflets and the conus arteriosus were observed, possibly acting as the primary connection form. The functions of the connective fibers in the valve leaflets and the bulbus are supported by an extracellular matrix rich in non-sulfated glycosaminoglycans. The complex reticular fiber network in the compact myocardium of the conus and the smooth muscle of the bulbus wall suggests a relevant role in support contraction of both muscle types, and in attachment and mobility of the conal valve leaflets.

Keywords

Amazonian teleost Collagen Elastin Heart Reticular fibers 

Notes

Acknowledgements

The authors thank the Laboratory of Morphology of Aquatic Organisms, Faculty of Science, Bauru Campus and the Laboratory of Microscopy and Microanalysis, IBILCE, UNESP São José do Rio Preto for technical assistance, and the Federal University of Tocantins, Araguaína Campus, for the heart samples. They also thank Maira Ferrari Munduruca for the manuscript review and the two anonymous reviewers for their helpful comments.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Níıvel Superior—Brasil (CAPES)—Finance Code 001 (Process No. 157704).

Compliance with ethical standards

Conflict of interest

All the authors are aware of the policy and have no conflict of interest to declare.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All the procedures performed in this study were in accordance with the ethical standards of the Ethics Committee on Animal Use of the Federal University of Tocantins, Araguaína Campus (Proc. No. 231001.000872/2014-49).

References

  1. Bancroft JD, Layton C (2013) Connective and mesenchymal tissues with their stains. In: Suvarna SK, Layton C, Bancroft JD (eds) Bancroft’s theory and practice of histological techniques. Churchill Livingstone Elsevier, Oxford, pp 187–214Google Scholar
  2. Benjamin M, Norman D, Santer RM, Scarborough D (1983) Histological histochemical and ultrastructural studies on the bulbus arteriosus of the sticklebacks Gasterosteus aculeatus and Pungitius pungitius (Pisces: Teleostei). J Zool 200(3):325–346Google Scholar
  3. Braun MH, Brill RW, Gosline JM, Jones DR (2003) Form and function of the bulbus arteriosus in yellowfin tuna (Thunnus albacares): dynamic properties. J Exp Biol 206(19):3327–3335Google Scholar
  4. Durán AC, Fernández B, Grimes AC, Rodríguez C, Arqué JM, Sans-Coma V (2008) Chondrichthyans have a bulbus arteriosus at the arterial pole of the heart: morphological and evolutionary implications. J Anat 213(5):97–606Google Scholar
  5. Durán AC, Reyes-Moya I, Fernández B, Rodríguez C, Sans-Coma V, Grimes AC (2014) The anatomical components of the cardiac outflow tract of the gray bichir Polypterus senegalus: their evolutionary significance. Zoology 117(6):370–376Google Scholar
  6. Evans DH, Harrie AC, Kozlowski MS (2003) Characterization of the effects of vasoactive substances on the bulbus arteriosus of the eel Anguilla rostrate. J Exp Zool Part A Comp Exp Biol 297(1):45–51Google Scholar
  7. Farrell AP, Jones DR (1992) The heart. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish physiology Vol 12A: the cardiovascular system. Academic Press, New York, pp 1–88Google Scholar
  8. Farrell AP, Smith F (2017) Cardiac form function and physiology. In: Gamperl K, Gillis TE, Farrell AP et al (eds) Fish physiology Vol 36 the cardiovascular system: morphology control and function. Academic Press, Cambridge, pp 155–264Google Scholar
  9. Gardinal MVB, Ruiz TFR, Moron SE, Oba Yoshioka ET, Uribe Gonçalves L, Franceschini Vicentini IB, Vicentini CA (2019) Heart structure in the Amazonian teleost Arapaima gigas (Osteoglossiformes Arapaimidae). J Anat 234:327–337Google Scholar
  10. Garofalo F, Imbrogno S, Tota B, Amelio D (2012) Morpho-functional characterization of the goldfish (Carassius auratus L) heart. Comp Biochem Physiol Part A Mol Integr Physiol 163(2):215–222Google Scholar
  11. Greer Walker M, Santer RM, Benjamin M, Norman D (1985) Heart structure of some deep-sea fish (Teleostei: Macrouridae). J Zool 205(1):75–89Google Scholar
  12. Grimes AC (2015) The cardiac outflow tract of primitive fishes. In: Zaccone G, Dabrowski K, Hedrick MS, Fernandes JMO, Icardo JM (eds) Phylogeny anatomy and physiology of ancient fishes. CRC Press, Boca Raton, pp 151–178Google Scholar
  13. Grimes AC, Durán AC, Sans-Coma V, Hami D Santoro MM, Torres M (2010) Phylogeny informs ontogeny: a proposed common theme in the arterial pole of the vertebrate heart. Evol Dev 12(6):552–567Google Scholar
  14. Guerrero A, Icardo JM, Durán AC, Gallego A, Domezain A, Colvée E, Sans-Coma V (2004) Differentiation of the cardiac outflow tract components in alevins of the sturgeon Acipenser naccarii (Osteichthyes, Acipenseriformes): implications for fish heart evolution. J Morphol 260:172–183Google Scholar
  15. Icardo JM (2006) Conus arteriosus of the teleost heart: dismissed but not missed. Anat Rec Part A Discov Mol Cell Evol Biol 288(8):900–908Google Scholar
  16. Icardo JM (2017) Heart morphology and anatomy. In: Gamperl AK, Gillis TE, Farrell AP, Brauner CJ (eds) Fish physiology: the cardiovascular system morphology control and function. Academic Press, San Diego, pp 1–54Google Scholar
  17. Icardo JM, Colvee E, Cerra MC, Tota B (1999a) Bulbus arteriosus of the antarctic teleosts I. The white-blooded Chionodraco hamatus. Anat Rec 254(3):396–407Google Scholar
  18. Icardo JM, Colvee E, Cerra MC, Tota B (1999b) Bulbus arteriosus of the Antarctic teleosts II. The red-blooded Trematomus bernacchii. Anat Rec 256(2):116–126Google Scholar
  19. Icardo JM, Colvee E, Cerra MC, Tota B (2000a) The bulbus arteriosus of stenothermal and temperate teleosts: a morphological approach. J Fish Biol 57:121–135Google Scholar
  20. Icardo JM, Colvee E, Cerra MC, Tota B (2000b) Light and electron microscopy of the bulbus arteriosus of the European eel (Anguilla anguilla). Cells Tissues Organs 167(2−3):184–198Google Scholar
  21. Icardo JM, Colvee E, Cerra MC, Tota B (2002a) Structure of the conus arteriosus of the sturgeon (Acipenser naccarii) heart I: the conus valves and the subendocardium. Anat Rec 267(1):17–27Google Scholar
  22. Icardo JM, Colvee E, Cerra MC, Tota B (2002b) The structure of the conus arteriosus of the sturgeon (Acipenser naccarii) heart: II. The myocardium the subepicardium and the conus-aorta transition. Anat Rec 268(4):388–398Google Scholar
  23. Icardo JM, Schib JL, Ojeda JL, Durán AC, Guerrero A, Colvee E, Sans-Coma V (2003) The conus valves of the adult gilthead seabream (Sparus auratus). J Anat 202(6):537–550Google Scholar
  24. Icardo JM, Guerrero A, Durán AC, Domezain A, Colvee E, Sans-Coma V (2004) The development of the sturgeon heart. Anat Embryol 208(6):439–449Google Scholar
  25. Junqueira LCU, Bignolas G, Brentani RR (1979) Picrosirius staining plus polarization microscopy a specific method for collagen detection in tissue sections. Histochem J 11(4):447–455Google Scholar
  26. Lorenzale M, López-Unzu MA, Fernández MC, Durán AC, Fernández B, Soto-Navarrete MT, Sans-Coma V (2017) Anatomical histochemical and immunohistochemical characterisation of the cardiac outflow tract of the silver arowana Osteoglossum bicirrhosum (Teleostei: Osteoglossiformes). Zoology 120:15–23Google Scholar
  27. Lorenzale M, López-Unzu MA, Rodríguez C, Fernández B, Durán AC, Sans-Coma V (2018) The anatomical components of the cardiac outflow tract of chondrichthyans and actinopterygians. Biol Rev 93(3):1604–1619Google Scholar
  28. Maldanis L, Carvalho M, Almeida, Freitas FI, Andrade JAFG, Nunes R, Rochitte CR, Poppi RJ, Freitas RO, Rodrigues F, Siljeström S, Lima AL, Galante D, Carvalho IS, Perez CA, Carvalho, Bettini J, Fernandez V, Xavier-Neto J (2016) Heart fossilization is possible and informs the evolution of cardiac outflow tract in vertebrates. eLIFE: Ecol Evol Biol 5:e14698Google Scholar
  29. Moriyama Y, Ito F, Takeda H, Yano T, Okabe M, Kuraku S, Koshiba-Takeuchi K (2016) Evolution of the fish heart by sub/neofunctionalization of an elastin gene. Nat Commun 7:10397Google Scholar
  30. Parsons CW (1930) The conus arteriosus of fishes. Q J Microsc Sci 73:145–176Google Scholar
  31. Ross MH, Pawlina W (2011) Histology, a text and atlas. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  32. Sans-Coma V, Gallego A, Muñoz-Chápuli R, De Andrés AV, Durán AC, Fernández B (1995) Anatomy and histology of the cardiac conal valves of the adult dogfish (Scyliorhinus canicula). Anat Rec 241(4):496–504Google Scholar
  33. Santer RM (1985) Morphology and innervation of the fish heart. Adv Anat Embryol Cell Biol 89:89–102Google Scholar
  34. Satchell GH, Jones MP (1967) The function of the conus arteriosus in the Port Jackson shark Heterodontus portusjacksoni. J Exp Biol 46(2):373–382Google Scholar
  35. Schib JL, Icardo JM, Durán AC, Guerrero A, López D, Colvee E, Sans-Coma V (2002) The conus arteriosus of the adult gilthead seabream (Sparus auratus). J Anat 201(5):395–404Google Scholar
  36. Senior HD (1907a) Note on the conus arteriosus of Megalops cyprinoides (Broussonet). Biol Bull 12(6):378–379Google Scholar
  37. Senior HD (1907b) Teleosts with a conus arteriosus having more than one row of valves. Anat Rec 4:83–84Google Scholar
  38. Senior HD (1907c) The conus arteriosus in Tarpon atlanticus (Cuvier and Valenciennes). Biol Bull 12(3):146–151Google Scholar
  39. Smith WC (1918) On the process of disappearance of the conus arteriosus in teleosts. Anat Rec 15(2):65–71Google Scholar
  40. Taboga SR, Vidal CB (2003) Collagen fibers in human prostatic lesions: histochemistry and anisotropies. J Submicrosc Cytol Pathol 35(1):11–16Google Scholar
  41. Ushiki T (2002) Collagen fibers reticular fibers and elastic fibers A comprehensive understanding from a morphological viewpoint. Arch Histol Cytol 65(2):109–126Google Scholar
  42. Weigert C (1898) Uber eine methode zur farbung elastischer fasern. Zentralbl Allg Pathol Anat 9:289–292Google Scholar
  43. Wolinsky H, Glagov S (1964) Structural basis for the static mechanical properties of the aortic media. Circ Res 14(5):400–413Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Zoology, Institute of BiosciencesSão Paulo State University (Unesp)BotucatuBrazil
  2. 2.Department of Biological Sciences, School of SciencesSão Paulo State University (Unesp)BauruBrazil
  3. 3.Aquaculture Center of UnespSão Paulo State University (Unesp)JaboticabalBrazil
  4. 4.Tocantins Federal University (UFT), Araguaína CampusAraguaínaBrazil
  5. 5.Department of Biology, Institute of Biosciences, Humanities and Exact SciencesSão Paulo State University (Unesp)São José do Rio PretoBrazil

Personalised recommendations