Zoomorphology

, Volume 137, Issue 1, pp 139–154 | Cite as

Morphology and porosity of the spines of the sea urchin Heterocentrotus mamillatus and their implications on the mechanical performance

  • Christoph Lauer
  • Tobias B. Grun
  • Isabel Zutterkirch
  • Raouf Jemmali
  • James H. Nebelsick
  • Klaus G. Nickel
Original paper

Abstract

Spines of the slate pencil sea urchin Heterocentrotus mamillatus Linnaeus, 1758, are in focus of biomimetic research as they feature a “graceful” failure behaviour under uniaxial compression dissipating energy and resisting high loads even after high strain. This study elucidates and quantifies the organization of calcitic trabeculae and pores in large primary spines of the slate pencil urchin H. mamillatus by image analysis from scanning electron microscopy, X-ray micro-computed tomography (µCT) and gravimetry. This study delivers a detailed distribution of porosities within the whole spine and shows that parts of the spines have a much higher porosity then hitherto thought. The central part (medulla) of the high-magnesium calcitic stereom of H. mamillatus spines has a porosity range of 75% to nearly 90%. From this innermost structure, more than 200 radially aligned, but often sinuous trabeculae extend to the spine rim. The structure of this complicated meshwork (radiating layer) is best seen in basal cross sections and was confirmed by µCT scans. The radiating layer has a porosity range from 40–70% and is irregularly separated by the dense growth layers (15–35% porosity). Growth layers were classified in proximal and distal growth layers with numbers ranging within a single animal between 3–14 and 2–7, respectively. These growth layers are characteristic for H. mamillatus spines and play a major role in their remarkable mechanical properties. The porosity of the spine increases from base to tip. Biological and mechanical implications of the variations are discussed.

Keywords

Morphology Echinoids Sea urchin spines Porosity µCT scans 

Notes

Acknowledgements

The authors gratefully thank the German Research Foundation (DFG—Deutsche Forschungsgemeinschaft) for funding this work within the framework of the Collaborative Research Centre (SFB/Transregio) 141 “Biological Design and Integrative Structures” project B01. We also thank Barbara Maier and Simone Schafflick in the workshop for their support. The work of an anonymous reviewer is kindly appreciated.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Statements on the welfare of animals

The sea urchins were purchased dead from a fossils collector, were not killed for the purpose of this study and are not listed as endangered species.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

References

  1. Burkhardt A, Hansmann W, Märkel K, Nieman HJ (1983) Mechanical design in spines of diadematoid echinoids (Echinodermata, Echinoidea). Zoomorphology 102:189–203CrossRefGoogle Scholar
  2. Clarke FW, Wheeler WC (1915) The inorganic constituents of echinoderms. US Geol Surv Prof Pap 90:191–196Google Scholar
  3. Coble R, Kingery W (1956) Effect of porosity on physical properties of sintered alumina. J Am Ceram Soc 39:377–385CrossRefGoogle Scholar
  4. Coppard SE, Campbell AC (2004) Taxonomic significance of spine morphology in the echinoid genera diadema and echinothrix. Invertebr Biol 123:357–371CrossRefGoogle Scholar
  5. Danzer R (2014) On the relationship between ceramic strength and the requirements for mechanical design. J Eur Ceram Soc 34:3435–3460CrossRefGoogle Scholar
  6. Danzer R, Supancic J, Pascual T, Lube T (2007) Fracture statistics of ceramics—Weibull statistics and deviations from Weibull statistics. Eng Fract Mech 74:2912–2932CrossRefGoogle Scholar
  7. Dawson MA, Gibson LJ (2007) Optimization of cylindrical shells with compliant cores. Int J Solids Struct 44:1145–1160CrossRefGoogle Scholar
  8. DeFoe OK, Compton AH (1925) The density of rock salt and calcite. Phys Rev 25:618–620.  https://doi.org/10.1103/PhysRev.25.618 CrossRefGoogle Scholar
  9. Deutler F (1926) Das Wachstum des Seeigelskeletts. In: Hartmann M, Hesse R (eds) Zoologische Jahrbücher Abteilung für Anatomie und Ontogenie der Tiere. Verlag von Gustav Fischer, Jena, pp 119–200Google Scholar
  10. Dotan A (1990) Population structure of the echinoid Heterocentrotus mammillatus (L.) along the littoral zone of the south-eastern Sinai. Coral Reefs 9:75–80CrossRefGoogle Scholar
  11. Dotan A, Fishelson L (1985) Morphology of spines of Heterocentrotus mammillatus (Echinodermata: Echinoidae) and its ecological significance. In: Keegan BF, O‘Connor BDS (eds) Echinodermata: Proceedings of the international echinoderm conference, Galway 24–29 Sept 1984. A.A. Balkema, Rotterdam, pp 253–260Google Scholar
  12. Durham JW (1955) Classification of clypeasteroid echinoids. Univ Calif Press Geol Sci 31:73–198Google Scholar
  13. Ebert TA (1986) A new theory to explain the origin of growth lines in sea urchin spines. Mar Ecol 34:197–199CrossRefGoogle Scholar
  14. Ebert TA (1988) Growth, regeneration, and damage repair of spines of the slate-pencil sea urchin Heterocentrotus mammillatus. Pac Sci 42:160–172Google Scholar
  15. Emson RH (1985) Bone idle—a recipe for success? In: Keegan BF, O’Connor BDS (eds) Echinodermata. Balkema, Rotterdam, pp 25–30Google Scholar
  16. Gibson LJ, Ashby MF (1982) The mechanics of three-dimensional cellular materials. Proc R Soc Lon 382:43–59CrossRefGoogle Scholar
  17. Grossmann JN, Nebelsick J (2013a) Stereom Differentiation in spines of Plococidaris verticillata, Heterocentrotus mammillatus and other regular sea urchins. In: Johnson C (ed) Echinoderms in a changing world. Taylor & Francis, London, pp 97–104Google Scholar
  18. Grossmann JN, Nebelsick JH (2013b) Comparative morphological and structural analysis of selected cidaroid and camarodont sea urchin spines. Zoomorphology 132:301–315.  https://doi.org/10.1007/s00435-013-0192-5 CrossRefGoogle Scholar
  19. Hasenpusch W (2000) Die Stachel der Griffelseeigel. Mikrokosmos 89:23–27Google Scholar
  20. Hesse E (1900) Die Mikrostruktur der fossilen Echinoidenstacheln und deren systematische Bedeutung. In: Bauer M, Koken E, Liebisch T (eds) Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, E. Schweizertbart’sche Verlagshandlung, Stuttgart, pp 185–264Google Scholar
  21. Ji S, Gu Q, Xia B (2006) Porosity dependence of mechanical properties of solid materials. J Mater Sci 41:1757–1768CrossRefGoogle Scholar
  22. Klang K, Bauer G, Toader N, Lauer C, Termin K, Schmier S, Kovaleva D, Haase W, Berthold C, Nickel KG, Speck T, Sobek W (2016) Plants and animals as source of inspiration for energy dissipation in load bearing systems and facades. In: Knippers J, Nickel KG, Speck T (eds) Biomimetic research for architecture and building construction. Springer, Switzerland, pp 109–133.  https://doi.org/10.1007/978-3-319-46374-2_7
  23. Kroh A, Nebelsick JH (2010) Echinoderms and Oligo-Miocene Carbonate Systems: potential applications in sedimentology and environmental reconstruction. Int Assoc Sedimentol Spec Publ 42:201–228Google Scholar
  24. Kroh A, Smith AB (2010) The phylogeny and classification of post-Palaeozoic echinoids. J Syst Palaeontol 8:147–212CrossRefGoogle Scholar
  25. Lawrence JM (1987) A functional biology of echinoderms. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  26. Lu G, Lu GQ, Xiao ZM (1999) Mechanical properties of porous materials. J Porous Mater 6:359–368CrossRefGoogle Scholar
  27. Mooi R (1986) Structure and function of clypeasteroid miliary spines (Echinodermata, Echinoides). Zoomorphology 106:212–223.  https://doi.org/10.1007/bf00312042 CrossRefGoogle Scholar
  28. Moureaux C, Perez-Huerta A, Compere P, Zhu W, Leloup T, Cusack M, Dubois P (2010) Structure, composition and mechanical relations to function in sea urchin spine. J Struct Biol 170:41–49.  https://doi.org/10.1016/j.jsb.2010.01.003 CrossRefPubMedGoogle Scholar
  29. Nebelsick JH, Dynowski JF, Grossmann JN, Tötzke C (2015) Echinoderms: hierarchically organized light weight skeletons. In: Hamm C (ed) Evolution of light weight structures. Analyses and technical applications. Springer, Dordrecht, pp 141–154CrossRefGoogle Scholar
  30. Nichols D (1962) Echinoderms. Anchor Press, Essex, p 200Google Scholar
  31. Otsu N (1979) A threshold selection method from grey-level histograms. IEEE Trans Syst Man Cybern SMC 9:62–66CrossRefGoogle Scholar
  32. Pabst W, Gregorová E, Tichá G (2006) Elasticity of porous ceramics—a critical study of modulus-porosity relations. J Eur Ceram Soc 26:1085–1097CrossRefGoogle Scholar
  33. Presser V, Schultheiß S, Berthold C, Nickel KG (2009a) Sea urchin spines as a model-system for permeable, light-weight ceramics with graceful failure behavior. Part I. Mechanical behavior of sea urchin spines under compression. J Bionic Eng 6:203–213CrossRefGoogle Scholar
  34. Presser V, Kohler C, Zivcová Z, Berthold C, Nickel KG, Schultheiß S, Gregorová E, Pabst W (2009b) Sea urchin spines as a model-system for permeable, light-weight ceramics with graceful failure behavior. Part II. Mechanical behavior of sea urchin spine inspired porous aluminum oxide ceramics under compression. J Bionic Eng 6:357–364CrossRefGoogle Scholar
  35. Presser V, Gerlach K, Vohrer A, Nickel KG, Dreher W (2010) Determination of the elastic modulus of highly porous samples by nanoindentation: a case study on sea urchin spines. J Mater Sci 45:2408–2418CrossRefGoogle Scholar
  36. Presser V, Schultheiß S, Kohler C, Berthold C, Nickel KG, Vohrer A, Finckh H, Stegmaier T (2011) Lessons from nature for the construction of ceramic cellular materials for superior energy absorption. Adv Eng Mater 13:1043–1049.  https://doi.org/10.1002/adem.201100066 Google Scholar
  37. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  38. Ridler TW, Calvard S (1978) Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybern 8:630–632CrossRefGoogle Scholar
  39. Schmier S, Lauer C, Schäfer I, Klang K, Bauer G, Thielen M, Termin K, Berthold C, Schmauder S, Speck T, Nickel KG (2016) Developing the experimental basis for an evaluation of scaling properties of brittle and ‘Quasi-Brittle’ biological materials. In: Knippers J, Nickel KG, Speck T (eds) Biomimetic research for architecture and building construction. Springer, Switzerland, pp 277–294.  https://doi.org/10.1007/978-3-319-46374-2_14 CrossRefGoogle Scholar
  40. Simkiss K, Wilbur KM (1989) Echinoderms - cells and syncytia. Biomineralization: cell biology and mineral deposition. Harcourt Brace Jovanovich, San Diego, pp 146–149Google Scholar
  41. Smith A (1980) Stereom microstructures of the echinoid test. Spec Pap Palaeontol 25:1–81Google Scholar
  42. Su X, Kamat S, Heuer AH (2000) The structure of sea urchin spines, large biogenic single crystals of calcite. J Mater Sci 35:5545–5551CrossRefGoogle Scholar
  43. Telford M (1982) Echinoderm spine structure, feeding and host relationships of four species of dissodactylus (Brachyura: Pinnotheridae). Bull Mar Sci 32:584–594Google Scholar
  44. Toader N, Sobek W, Nickel KG (2017) Energy absorption in functionally graded concrete bioinspired by sea urchin spines. J Bionic Eng 14:369–378.  https://doi.org/10.1016/s1672-6529(16)60405-5 CrossRefGoogle Scholar
  45. Tsafnat N, Fitz Gerald JD, Le HN, Stachurski ZH (2012) Micromechanics of sea urchin spines. PLoS One 7(9):e44140.  https://doi.org/10.1371/journal.pone.0044140 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Vevers HG (1966) Pigmentation. In: Boolootian RA (ed) Physiology of Echinodermata. Interscience Publishers, New York, pp 265–267Google Scholar
  47. Warton DI, Duursma RA, Falster DS, Taskinen S (2012) smatr 3- an R package for estimation and inference about allometric lines. Methods Ecol Evol 3:257–259.  https://doi.org/10.1111/j.2041-210X.2011.00153.x CrossRefGoogle Scholar
  48. Weber JN (1969a) The incorporation of magnesium into the skeletal calcites of echinoderms. Am J Sci 267:537–566CrossRefGoogle Scholar
  49. Weber JN (1969b) Origin of concentric banding in the spines of the tropical Echinoid Heterocentrotus. Pac Sci 23:452–466Google Scholar
  50. Weber J, Greer R, Voight B, White E, Roy R (1969) Unusual strength properties of echinoderm calcite related to structure. J Ultrastruct Res 26:355–366CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Division of Applied Mineralogy, Department of GeosciencesUniversity of TübingenTübingenGermany
  2. 2.Division of Invertebrate Paleontology and Paleoclimatology, Department of GeosciencesUniversity of TübingenTübingenGermany
  3. 3.German Aerospace Institute (DLR), Institute for Structure and DesignStuttgartGermany

Personalised recommendations