, Volume 136, Issue 4, pp 435–459 | Cite as

Morphology and evolution of scopula, pseudoscopula and claw tufts in Mygalomorphae (Araneae)

  • F. Pérez-Miles
  • J. P. L. Guadanucci
  • J. P. Jurgilas
  • R. Becco
  • C. Perafán
Original paper


We studied the morphology of scopula, claw tufts and a scopula-like feature (pseudoscopula) of tarsi on representatives of all Mygalomorphae spider families. The pseudoscopula is constituted by groups of non-microtriched conical setae. The taxonomic distribution of all these features was studied and mapped on a recent phylogeny of Mygalomorphae and the association of them with the lifestyles of the spiders was analyzed. Adhesive setae, as well as some other setal types found on ventral tarsi are described and characterized. The adhesive face of setae varied in the orientation in different parts of the tarsi, and this variation is more conspicuous in the spiders which only have claw tufts or scopula. We found an association of adhesive scopulae and claw tufts with burrower/cursorial or thin wafer lid trapdoor mygalomorphs as suggested for free hunter spiders, but we found that the pseudoscopula is associated with males of some trap-door and some weavers mygalomorphs. The presence of pseudoscopula widely extended among Mygalomorphae seems to be ancestral for the infraorder. The setal morphology of pseudoscopula suggests chemosensorial function; sparse chemosensory setae were also found in almost all Mygalomorphae. The morphology, functions and evolution of scopula, claw tufts and pseudoscopula are discussed.


Copulation Locomotion Mygalomorph Prey-capture Setae-morphology 



This research was funded by Comisión Sectorial de Investigación Científica (CSIC), Universidad de la República, Uruguay, CSIC I+D [C609-348] and also by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [479377/2012-0]. We greatly thank Witold Lapinski and Jonas Wolff for the exhaustive revision of an early version of this manuscript. Laura Montes de Oca is thanked for providing us photos of some species and Nelson Ferretti for the loan of specimens. We also thank two anonymous reviewers for valuable suggestions and critiques. CP thanks Agencia Nacional de Investigación e Innovación (ANNI), Uruguay, for the financial support under postgraduate scholarship POS_NAC_2011_1_3624 code.

Supplementary material

435_2017_364_MOESM1_ESM.pdf (16 kb)
Supplementary material 1 (PDF 15 kb)
435_2017_364_MOESM2_ESM.pdf (444 kb)
Supplementary material 2 (PDF 443 kb)


  1. Baerg WJ (1928) The life cycle and mating habits of the male tarantula. Q Rev Biol 3:109–116CrossRefGoogle Scholar
  2. Barth FG (1970) Die Feinstruktur des Spinneninteguments. II. Die räumliche Anordnung der Mikrofasern in der lamellierten Cuticula und ihre Beziehung zur Gestalt der Porenkanäle (Cupiennius salei Keys., adult, häutungsfern, Tarsus). Z Zellforsch 104:87–106CrossRefPubMedGoogle Scholar
  3. Barth FG (2001) Sinne und Verhalten: aus dem Leben einer Spinne. Springer, BerlinCrossRefGoogle Scholar
  4. Bond JE, Opell BD (2002) Phylogeny and taxonomy of the genera of south-western North American Euctenizinae trapdoor spiders and their relatives (Araneae: Mygalomorphae, Cyrtaucheniidae). Zool J Linn Soc-Lond 136:487–534CrossRefGoogle Scholar
  5. Bond JE, Hendrixson BE, Hamilton CA, Hedin M (2012) A reconsideration of the classification of the spider infraorder Mygalomorphae (Arachnida: Araneae) based on three nuclear genes and morphology. PLoS One 7:e38753CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cardoso P, Pekár S, Jocqué R, Coddington JA (2011) Global patterns of guild composition and functional diversity of spiders. PLoS One 6(6):e21710. doi: 10.1371/journal.pone.0021710 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Costa FG, Pérez-Miles F (1998) Behavior, life cycle and webs of Mecicobothrium thorelli (Araneae, Mygalomorphae, Mecicobothriidae). J Arachnol 26:317–329Google Scholar
  8. Costa FG, Pérez-Miles F (2002) Reproductive biology of Uruguayan theraphosids (Araneae, Theraphosidae). J Arachnol 30:571–587CrossRefGoogle Scholar
  9. Coyle FA (1971) Systematics and natural history of the mygalomorph spider genus Antrodiaetus and related genera (Araneae: Antrodiaetidae). Bull Mus Comp Zool 141:269–402Google Scholar
  10. Coyle FA (1985) Observations on the mating behaviour of the tiny mygalomorph spider, Microhexura montivaga Crosby & Bishop (Araneae, Dipluridae). Bull Br Arachnol Soc 6:328–330Google Scholar
  11. Coyle FA, Shear WA (1981) Observations on the natural history of Sphodros abboti and Sphodros rufipes (Araneae, Atypidae), with evidence for a contact sex pheromone. J Arachnol 9:317–326Google Scholar
  12. Dunlop JA (1994) Movements of scopulate claw tufts at the tarsus tip of a tarantula spider. Neth J Zool 45:513–520CrossRefGoogle Scholar
  13. Eggs W, Wolff JW, Khun-Nentwig L, Gorb SN, Nentwig W (2015) Hunting without a web: how lycosoid spiders subdue their prey. Ethology 121:1166–1177CrossRefGoogle Scholar
  14. Ferretti N, Ferrero A (2008) Courtship and mating behavior of Grammostola schulzei (Schmidt 1994) a burrowing tarantula from Argentina. J Arachnol 36:480–483CrossRefGoogle Scholar
  15. Ferretti N, Pompozzi G, Pérez-Miles F (2011) Sexual behavior of Acanthogonatus centralis (Araneae: Mygalomorphae: Nemesiidae) from Argentina, with some notes on their burrows. J Arachnol 39:533–536CrossRefGoogle Scholar
  16. Ferretti N, Pompozzi G, Copperi S, Pérez-Miles F, González A (2012) Copulatory behavior of Microstigmatidae (Araneae: Mygalomorphae): a study with Xenonemesia platensis from Argentina. J Arachnol 40:252–255CrossRefGoogle Scholar
  17. Ferretti N, Pompozzi G, Copperi S, Pérez-Miles F (2013) Sexual behaviour of mygalomorph spiders: when simplicity becomes complex; an update of the last 21 years. Arachnology 16(3):85–93CrossRefGoogle Scholar
  18. Foelix RF (2011) Biology of spiders. Oxford University Press, New YorkGoogle Scholar
  19. Foelix RF, Chu-Wang IW (1975) The structure of scopula hairs in spiders. In: Proceedings of the 6th international arachnological Congress. Amsterdam, pp 56–58Google Scholar
  20. Foelix RF, Jackson RR, Henksmeyer A, Hallas S (1984) Tarsal hairs specialized for prey capture in the salticid Portia. Rev Arachnol 5:329–334Google Scholar
  21. Foelix RF, Erb B, Michalik P (2010) Scopulate hairs in male Liphistius spiders: probable contact chemoreceptors. J Arachnol 38:599–603CrossRefGoogle Scholar
  22. Foelix RF, Rast B, Erb B (2012) Hafthaare bei Vogelspinnen: Vergleich einer bodenlebenden Brachypelma mit einer baumlebenden Poecilotheria. Arachne 6:16–23Google Scholar
  23. Guadanucci JPL (2005) Tarsal scopula significance in Ischnocolinae phylogenetics (Araneae, Mygalomorphae, Theraphosidae). J Arachnol 33:456–467CrossRefGoogle Scholar
  24. Hill DE (1977) The pretarsus of salticid spiders. Zool J Linn Soc 60:319–338CrossRefGoogle Scholar
  25. Homann H (1957) Haften Spinnen an einer Wasserhaut? Naturwissenschaften 44:318–319CrossRefGoogle Scholar
  26. Jocqué R, Alderweireldt M (2005) Lycosidae: the grassland spiders. In: Deltshev C, Stoev P (eds) European Colloquium of Arachnology 2005, Blagoevgrad, Bulgaria, Acta Zool Bulg, Suppl No.1. Institute of Zoology and National Museum of Natural History, Bulgarian Academy of Sciences, pp 125–130Google Scholar
  27. Jocqué R, Dippenaar-Schoeman AS (2007) Spider families of the world. Royal Museum for Central Africa, TervurenGoogle Scholar
  28. Junk WJ (1997) The central amazonian floodplain: ecology of a pulsing system. Ecological studies, vol 126. Springer, BerlinCrossRefGoogle Scholar
  29. Keane PN, Hovgaard MB, Mostaert AS, Jarvis SP (2012) Asymmetric spatula heads combined with lateral forces provide a mechanism for controlling the adhesive attachment of a range of spider species. J Adhes Sci Technol 28(3–4):256–272CrossRefGoogle Scholar
  30. Kesel AB, Martin A, Seidl T (2003) Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata. J Exp Biol 206:2733–2738CrossRefPubMedGoogle Scholar
  31. Kesel AB, Martin A, Seidl T (2004) Getting a grip on spider attachment: an AFM approach to microstructure adhesion in arthropods. Smart Mater Struct 13:512–518CrossRefGoogle Scholar
  32. Keyserling E (1877) Ueber amerikanische Spinnenarten der Unterordnung Citigradae. Verhandlungen der Kaiserlich-Königlichen Zoologisch-Botanischen Gesellschaft in Wien 26:609–708Google Scholar
  33. Labarque FM, Wolff JO, Michalik P, Griswold CE, Ramírez MJ (2017) The evolution and function of spider feet (Araneae: Arachnida): multiple acquisitions of distal articulations. Zool J Linnean Soc 20:1–34Google Scholar
  34. Lapinski W, Walther P, Tschapka M (2015) Morphology reflects microhabitat preferences in an assemblage of Neotropical wandering spiders. Zoomorphology. doi: 10.1007/s00435-015-0247-8 Google Scholar
  35. Maddison WP, Maddison DR (2017) Mesquite: a modular system for evolutionary analysis. Version 3.2. http://mesquiteproject.org. Accessed 1 July 2017
  36. Montes de Oca L, Pérez-Miles F (2013) Two new species of Chaco Tullgren from the Atlantic coast of Uruguay (Araneae, Mygalomorphae, Nemesiidae). Zookeys 337:73–87CrossRefGoogle Scholar
  37. Niederegger S (2013) Functional aspects of spider scopulae. In: Nentiw W (ed) Spider Ecophysiology. Springer, BerlinGoogle Scholar
  38. Niederegger S, Gorb S (2006) Friction and adhesion in the tarsal and metatarsal scopulae of spiders. J Comp Physiol A 192:1223–1332CrossRefGoogle Scholar
  39. Pekar S, Sobotnik J, Lubin J (2011) Armoured spiderman: morpological and behavioural adaptations of a specialised araneophagous predator (Araneae: Palpimanidae). Naturwissenschaften 98:593–603CrossRefPubMedGoogle Scholar
  40. Perafán C, Galvis W, Gutiérrez M, Pérez-Miles F (2016) Kankuamo, a new Theraphosid genus from Colombia (Araneae, Mygalomorphae), with a new type of urticating setae and divergent male genitalia. Zookeys 601:89–109CrossRefGoogle Scholar
  41. Pérez-Miles F (1994) Tarsal scopula division in Theraphosinae (Araneae, Theraphosidae): its systematic significance. J Arachnol 22:46–53Google Scholar
  42. Pérez-Miles F, Perafán C, Santamaría L (2015) Tarantulas (Araneae: Theraphosidae) use different adhesive pads complementary during climbing on smooth surfaces: experimental approach in eight arboreal and burrower species. Biol Open 4:1643–1648CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ramírez MJ (2014) The morphology and phylogeny of dionychan spiders (Araneae, Areneomorphae). Bull Am Mus Nat Hist 390:1–374CrossRefGoogle Scholar
  44. Raven RJ (1985) The spider infraorder Mygalomorphae (Araneae): cladistics and systematics. Bull Am Mus Nat Hist 182:1–180Google Scholar
  45. Raven RJ (1988) Preliminary observations on the mating behaviour of the Australian mygalomorph spider Australothele jamiesoni (Dipluridae, Araneae, Arachnida). Mem Queensl Mus 25:471–474Google Scholar
  46. Richards AG, Richards PA (1979) The cuticular protuberances of insects. Int J Insect Morphol Embryol 8:143–157CrossRefGoogle Scholar
  47. Ridley M (1983) The explanation of organic diversity. Blackwell Scientific Publications, OxfordGoogle Scholar
  48. Rovner JS (1978) Adhesive hairs in spiders: behavioral functions and hydraulically mediated movement. Symp Zool Soc Lond 42:99–108Google Scholar
  49. Rovner JS (1980) Morphological and ethological adaptations for prey capture in wolf spiders (Araneae, Lycosidae). J Arachnol 8:201–215Google Scholar
  50. Schiapelli RD, de Gerschman P (1975) Calathotarsus simoni sp. nov. (Araneae, Migidae). Physis Revista de la Sociedad Argentina de Ciencias Naturales (C) 34:17–21Google Scholar
  51. Schwendinger PJ (1991) Two new trap-door spiders from Thailand (Araneae, Mygalomorphae, Idiopidae). Bull Br Arachnol Soc 8:233–240Google Scholar
  52. Simon E (1889) Etudes arachnologiques. 21e Mémoire. XXX. Descriptions de quelques arachnides du Chili et remarques synonymiques sur quelques unes des espèces décrites par Nicolet. Ann Soc entomol Fr 8(6):217–222Google Scholar
  53. Simon E (1892) Histoire Naturelle des Araignées, vol 1, Paris, pp 1–256Google Scholar
  54. Tietjen WJ, Rovner JS (1980) Trail-following behaviour in two species of wolf spiders: sensory and etho-ecological concomitants. Anim Behav 28:735–741CrossRefGoogle Scholar
  55. Varenberg M, Pugno NM, Gorb SN (2010) Spatulate structures in biological fibrillar adhesion. Soft Matter 6:3269–3272CrossRefGoogle Scholar
  56. Wohlfart E, Wolff JO, Arz E, Gorb SN (2014) The whole is more than the sum of all its parts: collective effect of spider attachment organs. J Exp Biol 217:222–224CrossRefPubMedGoogle Scholar
  57. Wolff JO, Gorb SN (2012a) Comparative morphology of pretarsal scopulae in eleven spider families. Arthropod Struct Dev 41:419–433CrossRefPubMedGoogle Scholar
  58. Wolff JO, Gorb SN (2012b) The influence of humidity on the attachment ability of the spider Philodromus dispar (Araneae, Philodromidae). Proc R Soc B 279:139–143CrossRefPubMedGoogle Scholar
  59. Wolff JO, Gorb SN (2013) Radial arrangement of Janus-like setae permits friction control in spiders. Scientific Reports. doi: 10.1038/srep01101 Google Scholar
  60. Wolff JO, Gorb SN (2015) Adhesive foot pads: an adaptation to climbing? An ecological surveyin hunting spiders. Zoology 118:1–7CrossRefPubMedGoogle Scholar
  61. Wolff JO, Gorb SN (2016) Tape- and spatula-shaped microstructures. In: Wolff JO, Gorb SN (eds) Attachment structures and adhesive secretions in arachnids, Springer, Biologically-Inspired Systems 7, Switzerland, pp 53–30. doi:10.1007/978-3-319-45713-0_3Google Scholar
  62. Wolff JO, Nentwig W, Gorb SN (2013) The great silk alternative: multiple co-evolution of web loss and sticky hairs in spiders. PLoS One 8:1–13Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Sección Entomología, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  2. 2.Departamento de Zoologia, Instituto de BiociênciasUNESPRio ClaroBrazil

Personalised recommendations