Skip to main content
Log in

Comparative hindlimb myology within the family Falconidae

  • Original paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

A characteristical feature of a raptors’ hindlimb is their strengthen musculature that aids gripping prey with their sharp talons. To trace specific anatomical modifications it is necessary to study closely related species, with this aim, the myology of the hindlimb of the three subfamilies of Falconidae is explored. For this, a description of a Herpetotherinae member (Micrastur ruficollis) was made for the first time. The hindlimb muscle mass of Polyborinae, Falconinae and Herpetotherinae was compared according to their main function (flexion and extension) on their joints (femur, tibiotarsus, tarsometatarsus and digits). The pattern of Micrastur ruficollis resembles that of the Falconidae except for a few differences towards the development of certain muscles. As it is noteworthy the presence of the second belly of the musculus flexor cruris medialis (unique among birds), its identity will be discussed. Also, Micrastur ruficollis had the highest values of the hindlimb mass. Polyborinae and Falconinae had several differences between each other. The muscles mass of the hip and knee, both flexion and extension, were higher in the Polyborinae, this is in accordance to their more terrestrial habit. Instead, Falconinae had a higher mass in the m. flexor digitorum longus, m. flexor hallucis longus and m. tibialis cranialis, the most important muscles for gripping prey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Backus SB, Sustaita D, Odhner LU, Dollar AM (2015) Mechanical analysis of avian feet: multiarticular muscles in grasping and perching. R Soc Open Sci 2:140350. doi:10.1098/rsos.140350

    Article  PubMed  PubMed Central  Google Scholar 

  • Baumel JJ, King SA, Breazile JE, Evans HE, Vanden Berge JC (1993) Handbook of avian anatomy. Publication of the Nuttal Ornitological Club N° 23, Cambridge

    Google Scholar 

  • Bennett MB, Stafford JA (1988) Tensile properties of calcified and uncalcified avian tendons. J Zool 214:343–351

    Article  Google Scholar 

  • Berger AJ (1952) The comparative functional morphology of the pelvic appendage in three genera of Cuculidae. Am Midl Nat J 47:513–605

    Article  Google Scholar 

  • Berger AJ (1956) The appendicular myology of the Pygmy Falcon (Polihierax semitorquatus). Am Midl Nat J 55:326–333

    Article  Google Scholar 

  • Bierregaard RO (1994) Crested Caracara. P. 250 in del Hoyo J, Elliott A, Sargatal J (eds) Handbook of birds of the world. Vol. 2. New World vultures to guineafowl. Lynx Edicions, Barcelona

    Google Scholar 

  • Biondi LM, Bó MS, Favero M (2005) Dieta del chimango (Milvago Chimango) durante el periodo reproductivo en el sudeste de la provincia de Buenos Aires, Argentina. Ornitología Neotropical 16:31–42

    Google Scholar 

  • Bó MS, Baladrón A, Biondi LM (2007) Ecología trófica de Falconiformes y Estrigiformes: Tiempo de síntesis. Hornero 22:97–115.

    Google Scholar 

  • Bock WJ (1965) The role of adaptive mechanisms in the evolution of higher levels of organization. Syst Zool 14:272–287

    Article  CAS  PubMed  Google Scholar 

  • Bock WJ (1974) Philosophical foundations of classical evolutionary classification. Syst Zool 22:375–392

    Article  Google Scholar 

  • Brown LH, Amadon D (1968) Eagles, hawks, and falcons of the world. Country Life Books, London

    Google Scholar 

  • Cade TJ (1982) Falcons of the world. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Conroy RM, Weigl PD, Clark JC, Ward AB. 1997. Functional morphology of owl hindlimbs: implications for prey selection and resource partitioning. Am Zool 37:37 A

    Google Scholar 

  • Dickinson EC (2003) The Howard and Moore Complete Checklist of the Birds of the World. Third ed [M]. Princeton University Press, London, p 606

    Google Scholar 

  • Dunning JB (2008) Handbook of avian body masses. CRC, Boca Raton

    Google Scholar 

  • Engles WL (1940) Structural adaptations in the Thrashers. University of California publications. Zoology 42(7):341–400

    Google Scholar 

  • Fisher HI (1957) The function of m. depressor caudae and m. caudofemoralis in pigeons. Auk 7:479–486

    Article  Google Scholar 

  • Fuchs J, Chen S, Johnson JA, Mindell DP (2011) Pliocene diversification within the South American forest-falcons (Falconidae: Micrastur). Molecular Phylogenetic. Evol Int J org Evol 60:398–407

    Google Scholar 

  • Fuchs J, Johnson JA, Mindell DP (2012) Molecular systematic of the caracaras and allies (Falconidae: Polyborinae) inferred from mitochondrial and nuclear sequence data. Ibis 154:520–532

    Article  Google Scholar 

  • Fuchs J, Johnson JA, Mindell DP (2015) Rapid diversification of falcons (Aves: Falconidae) due to expansion of open habitats in the Late Miocene. Mol Phylogenet Evol 82:166–182

    Article  PubMed  Google Scholar 

  • Goslow GE (1967) The functional analysis of the striking mechanisms of raptorial birds. Ph.D. University of California, dissertation

  • Gatesy SM (1999) Guineafowl hindlimb function. II. Electromyographic analysis and motor pattern evolution. J Morphol 240:127–142

    Article  Google Scholar 

  • Gatesy SM, Dial KP (1993) Tail muscle activity patterns in walking and flying pigeons (Columba livia). J Exp Biol 176:55–76

    Google Scholar 

  • George JC, Berger AJ (1966) Avian myology. Academic, New York, p 500

    Google Scholar 

  • GRIN (Global Raptor Information Network) (2016) Species account. http://www.globalraptors.org/grin/indexAlt.asp

  • Harcourt-Brown N (2001) Radiographicmorphology of the pelvic limb of Falconiformes and its taxonomic implications. Netherlands. J Zool 51:155–178

    Google Scholar 

  • Hartman FA (1961) Locomotor mechanisms of birds. Smithsonian Misc Collect 143:1–91

    Google Scholar 

  • Hudson GE (1937) Studies on the muscles of the pelvic appendages in birds. Am Midl Nat J 18:1–108

    Article  Google Scholar 

  • Hudson GE (1948) Studies on the muscles of the pelvic appendage in birds II: The heterogeneous order Falconiformes. Am Midl Nat J 39:102–127

    Article  Google Scholar 

  • Ilyinsky VA (2008) Locomotor adaptations in the hindlimbs of owls: the Burrowing Owl (Athene cunicularia), compared to the Little Owl (Athene noctua). Oryctos 7:271–276.

    Google Scholar 

  • Jacobson RD, Hollyday M (1982) A behavioral and electromyographic study of locomotion in the chick. J Neurophysiol 48:238–256

    CAS  PubMed  Google Scholar 

  • Jollie M (1976) A contribution to the morphology and phylogeny of the Falconiformes I. Evol Theory 1:285–298

    Google Scholar 

  • Jollie M (1977a) A contribution to the morphology and phylogeny of the Falconiformes. Pt. II. Evol Theory 2:115–208

    Google Scholar 

  • Jollie M (1977b) A contribution to the morphology and phylogeny of the Falconiformes. Pt. III. Evol Theory 2:209–300

    Google Scholar 

  • Jollie M (1977c) A contribution to the morphology and phylogeny of the Falconiformes. Pt. IV. Evol Theory 3:1–142

    Google Scholar 

  • Lieber RL (2002) Skeletal muscle structure, function, and plasticity: the physiological basis of rehabilitation. Lippincott Williams & Wilkins, Philadelphia, p 369

    Google Scholar 

  • Mckitrick MC (1986) Individual variation in the flexor cruris lateralis muscle of the Tyrannidae (Aves: Passeriformes) and its possible significance. J Zool 209:251–270

    Article  Google Scholar 

  • Mckricit MC (1993) Trends in the evolution of hindlimb musculature in aerial-foraging birds. Auk 110(2):189–206

    Google Scholar 

  • Mosto MC (2014) Estructura y función del complejo apendicular posterior en rapaces diurnas (Falconidae y Accipitridae). PhD Thesis. La Plata: Facultad de Ciencias Naturales y Museo. II volumes 240 p. http://naturalis.fcnym.unlp.edu.ar/id/20140603001348

  • Mosto MC, Tambussi CP (2014) Qualitative and quantitative analysis of talons of diurnal bird of prey. Anat Histol Embryol 43:6–15

    Article  Google Scholar 

  • Mosto MC, Carril J, Picasso MBJ (2013) The hindlimb myology of Milvago chimango (Polyborinae, Falconidae). J Morphol 274:1191–1201

    Article  PubMed  Google Scholar 

  • Mosto MC, Picasso MBJ, Biondi LM (2016) Long-legged Caracaras: terrestrial habitat and hindlimb morphology. J Zool 298:274–284

    Article  Google Scholar 

  • Picasso MBJ (2015) Ontogenetic Scaling of the Hindlimb Muscles of the Greater Rhea (Rhea americana) Anatomia, Histologia. Embryololgia 44:452–459

    CAS  Google Scholar 

  • Spring L (1965) Climbing and pecking adaptation in some North American woodpeckers. Condor 67(6):457–488

    Article  Google Scholar 

  • Stoessel A, Kilbourne BM, Fischer MS (2013) Morphological integration versus ecological plasticity in the avian pelvic limb skeleton. J Morphol 274:483–495

    Article  PubMed  Google Scholar 

  • Sustaita D (2008) Musculoskeletal underpinnings to differences in killing behavior between North American accipiters (Falconiformes: Accipitridae) and falcons (Falconidae). J Morphol 269:283–301

    Article  PubMed  Google Scholar 

  • Thorstrom R (2000) The food habits of sympatric forest-falcons during the breeding season in northeastern Guatemala. Raptor Res 34(3):196–202

    Google Scholar 

  • Vanden Berge J, Storer W (1995) Intratendinuos Ossification in birds: a review. J Morphol 226:47–77

    Article  Google Scholar 

  • Ward AB, Weigl PD, Conroy RM (2002) Functional morphology of raptor hindlimbs: implications for resource partitioning. Auk 119:1052–1063

    Article  Google Scholar 

  • White CM, Olsen PD, Kiff LE (1994) Family Falconidae (Falcons and Caracaras). In: del Hoyo J, Elliott A, Sargatal J, eds. Handbook of the birds of the World, Vol. 2: New World Vultures to Guinea fowl. Lynx Editions, Barcelona, pp 216–277

    Google Scholar 

Download references

Acknowledgements

This paper was possible thanks to the access of materials by Yolanda Davies (Museo Bernadino Rivadavia, MACN), GP Guillermo Gil and Tec. Marcelo Cavicchia (Parque Nacional Nahuel Huapi PN° 1380). Thanks to Mariana Picasso for always giving a detailed reading and suggestions for the improvement of this paper, to Erica San Martín for the improvement of the English and Guillermo Cassini for his guidance on some of the contents of this MS and for his (I assume) great patience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Clelia Mosto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosto, M.C. Comparative hindlimb myology within the family Falconidae. Zoomorphology 136, 241–250 (2017). https://doi.org/10.1007/s00435-017-0343-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-017-0343-1

Keywords

Navigation