Zoomorphology

, Volume 135, Issue 3, pp 279–289 | Cite as

Ultrastructure of embryonated eggs of the cestode Gyrocotyleurna (Gyrocotylidea) using cryo-methods

  • Céline Levron
  • Tomáš Scholz
  • Marie Vancová
  • Roman Kuchta
  • David Bruce Conn
Original Article

Abstract

Ultrastructure of eggs of the cestode Gyrocotyleurna Grube and Wagener 1852 with fully formed shells and early embryonic stages is described for the first time. Multiple techniques used included cryo-methods of high-pressure freezing with freeze substitution combined with field emission scanning electron microscopy and transmission electron microscopy (TEM). After 20 days of in vitro maturation, eggs are composed, from the exterior to the interior, of a thick egg shell of vitelline origin, an early embryonic envelope, a ring of numerous large vitellocytes, and a group of differentiating blastomeres situated in the center, forming the early presumptive larva. The thick resistant egg shell is similar to that reported from other polylecithal neodermatan flatworms. The embryonic envelope is poorly formed at this stage and not yet divided into inner and outer envelopes as occurs in all neodermatans described to date. Vitellocytes are separate, not forming a syncytium, and are filled with diverse vitelline materials as well as lipid droplets and associated endomembrane components having ultrastructure consistent with macroautophagy systems seen among many animals in apoptotic or autophagic cells. These results largely corroborate the basic observations and interpretations of previous TEM studies on other neodermatans and provide insight into a powerful suite of cryo-techniques that can enhance our work with these challenging subjects.

Keywords

Gyrocotylidea Ultrastructure Embryonic Cryo-technique Cestoda 

References

  1. Ashton PD, Harrop R, Shah B, Wilson RA (2001) The schistosome egg: development and secretions. Parasitology 122:329–338CrossRefPubMedGoogle Scholar
  2. Azzouz Draoui N, Maamouri F (1997) Observations sur le développement de Clestobothrium crassiceps (Rud., 1819) (Cestoda, Pseudophyllidea) parasite intestinal de Merluccius merluccius L., 1758 (Teleostei). Parasite 4:81–82CrossRefGoogle Scholar
  3. Bandoni SM, Brooks DR (1987) Revision and phylogenetic analysis of the Gyrocotylidea Poche, 1926 (Platyhelminthes: Cercomeria: Cercomeromorpha). Can J Zool 65:2369–2389CrossRefGoogle Scholar
  4. Beller M, Thiel K, Thul PJ, Jäckle H (2010) Lipid droplets: a dynamic organelle moves into focus. FEBS Lett 584:2176–2182. doi:10.1016/j.febslet.2010.03.022 CrossRefPubMedGoogle Scholar
  5. Berland B, Bristow GA, Grahl-Nielsen O (1990) Chemotaxonomy of Gyrocotyle (Platyhelminthes: Cercomeria) species, parasites of chimaerid fish (Holocephali), by chemometry of their fatty acids. Mar Biol 105:185–189CrossRefGoogle Scholar
  6. Brubacher JL, Vieira AP, Newmark PA (2014) Preparation of the planarian Schmidtea mediterranea for high-resolution histology and transmission electron microscopy. Nat Protoc 3:661–673CrossRefGoogle Scholar
  7. Burt MDB (1987) Early morphogenesis in the Platyhelminthes with special reference to egg development and development of cestode larvae. Int J Parasitol 17:241–253CrossRefPubMedGoogle Scholar
  8. Cable J, Harris PD, Tinsley RC (1996) Ultrastructural adaptations for viviparity in the female reproductive system of gyrodactylid monogeneans. Tissue Cell 28:515–526CrossRefPubMedGoogle Scholar
  9. Colin JA, Williams HH, Halvorsen O (1986) One or three gyrocotylideans (Platyhelminthes) in Chimaera monstrosa (Holocephali)? J Parasitol 72:10–21CrossRefGoogle Scholar
  10. Conn DB (1985a) Fine structure of the embryonic envelopes of Oochoristica anolis (Cestoda: Linstowiidae). Z Parasitenkd 71:639–648CrossRefGoogle Scholar
  11. Conn DB (1985b) Scanning electron microscopy and histochemistry of embryonic envelopes of the porcupine tapeworm, Monoecocestus americanus (Cyclophyllidea: Anoplocephalidae). Can J Zool 63:1194–1198CrossRefGoogle Scholar
  12. Conn DB (1987) Fine structure, development and senescence of the uterine epithelium of Mesocestoides lineatus (Cestoda: Cyclophyllidea). Trans Am Microsc Soc 106:63–73CrossRefGoogle Scholar
  13. Conn DB (1988) Development of the embryonic envelopes of Mesocestoides lineatus (Cestoda: Cyclophyllidea). Int J Invert Reprod Dev 14:119–130CrossRefGoogle Scholar
  14. Conn DB (1993) Ultrastructure of the gravid uterus of Hymenolepis diminuta (Platyhelminthes: Cestoda). J Parasitol 79:583–590CrossRefPubMedGoogle Scholar
  15. Conn DB (2000) Atlas of invertebrate reproduction and development, 2nd edn. Wiley, New YorkGoogle Scholar
  16. Conn DB (2005) Glossary of cestode embryonic and larval structures. Wiad Parazytol 51:266Google Scholar
  17. Conn DB, Forman LA (1993) Morphology and fine structure of the gravid uterus of three hymenolepidid tapeworm species (Platyhelminthes: Cestoda). Invert Reprod Dev 23:95–103CrossRefGoogle Scholar
  18. Conn DB, Rocco LJ (1989) Fine structure of the cellular parenchyma and extracellular matrix of Ophiotaenia loennbergii (Cestoda: Proteocephalidea). Acta Zool (Stockh) 70:105–110CrossRefGoogle Scholar
  19. Conn DB, Świderski Z (2008) A standardized terminology of the embryonic envelopes and associated developmental stages of tapeworms (Platyhelminthes: Cestoda). Folia Parasitol 55:42–52CrossRefPubMedGoogle Scholar
  20. Conn DB, Etges FJ, Sidner RA (1984) Fine structure of the gravid paruterine organ and embryonic envelopes of Mesocestoides lineatus (Cestoda). J Parasitol 70:68–77CrossRefGoogle Scholar
  21. Dubinina MN (1982) Parasitic worms of the class Amphilinida (Platyhelminthes). Trudy Zool Inst Acad Nauk USSR Nauka Leningr 100:1–143 (in Russian) Google Scholar
  22. Egger B, Gschwentner R, Hess MW, Nimeth KT, Adamski Z, Willem M, Rieger R, Salvenmoser W (2009) The caudal regeneration blastema is an accumulation of rapidly proliferating stem cells in the flatworm Macrostomum lignano. BMC Dev Biol 9:41CrossRefPubMedPubMedCentralGoogle Scholar
  23. Farese RV Jr, Walther TC (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139:855–860CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fujimoto T, Parton RG (2011) Not just fat: the structure and function of the lipid droplet. Cold Spring Harb Perspect Biol 3:a004838. doi:10.1101/cshperspect.a004838 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gibson DI (1994) Order Gyrocotylidea Poche, 1926. In: Khalil LF, Jones A, Bray RA (eds) Keys to the cestode parasites of vertebrates. CAB International, Wallingford, pp 11–13Google Scholar
  26. Halton DW, Stanrock SD, Hardcastle A (1974) Vitelline cell development in monogenean parasites. Z Parasitenkd 45:45–61CrossRefPubMedGoogle Scholar
  27. Halvorsen O, Williams HH (1968) Studies of the helminth fauna of Norway. IX. Gyrocotyle: (Platyhelminthes) in Chimaera monstrosa from Oslo Fjord. Nytt Mag Zool 15:130–142Google Scholar
  28. Hohenberg H, Mannweiler K, Sleytr UB (1994) High pressure freezing of cell suspensions in cellulose capillary tubes. J Microsc 175:34–43CrossRefPubMedGoogle Scholar
  29. Jabbar A, Crawford S, Młocicki D, Świderski Z, Conn DB, Jones MK, Beveridge I, Lightowlers MW (2010) Ultrastructural reconstruction of Taenia ovis oncospheres from serial sections. Int J Parasitol 40:1419–1431CrossRefPubMedGoogle Scholar
  30. Jarecka L (1961) Morphological adaptations of tapeworm eggs and their importance in the life cycles. Acta Parasitol Pol 9:409–426Google Scholar
  31. Jones MK, Bong SH, Green KM, Holmes P, Duke M, Loukas A, McManus DP (2008) Correlative and dynamic imaging of the hatching biology of Schistosoma japonicum from eggs prepared by high pressure freezing. PLoS Negl Trop Dis 2:e334CrossRefPubMedPubMedCentralGoogle Scholar
  32. Khampoosa P, Jones MK, Lovas EM, Srisawangwong T, Laha T, Piratae S, Thammasiri C, Suwannatrai A, Sripanidkulchai B, Eursitthichai V, Tesana S (2011) Light and electron microscopy observations of embryogenesis and egg development in the human liver fluke, Opisthorchis viverrini (Platyhelminthes, Digenea). Parasitol Res 110:208–799Google Scholar
  33. Kuchta R, Scholz T, Bray RA (2008) Revision of the order Bothriocephalidea Kuchta, Scholz, Brabec & Bray, 2008 (Eucestoda) with amended generic diagnoses and keys to families and genera. Syst Parasitol 71:81–136CrossRefPubMedGoogle Scholar
  34. Llewellyn J (1982) Host-specificity and corresponding evolution in monogenean flatworms and vertebrates. Mem Mus Natl Hist Nat 123:289–293Google Scholar
  35. Mackiewicz JS (1968) Vitellogenesis and eggshell formation in Caryophyllaeus laticeps (Pallas) and Caryophyllaeides fennica (Schneider) (Cestoidea: Caryophyllidea). Z Parasitenkd 30:18–32CrossRefGoogle Scholar
  36. Malmberg G (1974) On the larval protonephridial system of Gyrocotyle and the evolution of Cercomeromorphae (Platyhelminthes). Zool Scr 3:65–81CrossRefGoogle Scholar
  37. Manter HW (1951) Studies on Gyrocotyle rugosa Diesing, 1850, a cestodarian parasite of the elephant fish, Callorhynchus milii. Zool Publ Vic Univ Coll 17:1–11Google Scholar
  38. Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7:373–378CrossRefPubMedGoogle Scholar
  39. McDonald K (2007) Cryopreparation methods for electron microscopy of selected model systems. Methods Cell Biol 79:23–56CrossRefPubMedGoogle Scholar
  40. Młocicki D, Świderski Z, Bruňanská M, Conn DB (2010a) Functional ultrastructure of the hexacanth larvae in the bothriocephalidean cestode Eubothrium salvelini (Schrank, 1790) and its phylogenetic implications. Parasitol Int 59:539–548. doi:10.1016/j.parint.2010.07.001 CrossRefPubMedGoogle Scholar
  41. Młocicki D, Świderski Z, Conn DB (2010b) Ultrastructure of the early embryonic stages of Corallobothrium fimbriatum (Cestoda: Proteocephalidea). J Parasitol 96:839–846CrossRefPubMedGoogle Scholar
  42. Młocicki D, Świderski Z, Mackiewicz JS, Ibraheem MH (2010c) Ultrastructure of intrauterine eggs: evidence of early ovoviviparity in the caryophyllidean cestode Wenyonia virilis Woodland, 1923. Acta Parasitol 55:349–358Google Scholar
  43. Młocicki D, Świderski Z, Mackiewicz JS, Ibraheem MH (2011) Ultrastructural and cytochemical studies of GER-bodies in the intrauterine eggs of Wenyonia virilis Woodland, 1923 (Cestoda, Caryophyllidea). Acta Parasitol 56:40–47Google Scholar
  44. Moor H (1987) Theory and practice of high pressure freezing. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin, pp 175–191CrossRefGoogle Scholar
  45. Müller-Reichert T, Srayko M, Hyman AA, O’Toole E, McDonald K (2007) Correlative light and electron microscopy of early Caenorhabditis elegans embryos in mitosis. Methods Cell Biol 79:101–119CrossRefPubMedGoogle Scholar
  46. Müller-Reichert T, Mäntler J, Srayko M, O’Toole E (2008) Electron microscopy of the early Caenorhabditis elegans embryo. J Microsc 230:297–307CrossRefPubMedGoogle Scholar
  47. Murphy S, Martin S, Parton RG (2009) Lipid droplet-organelle interactions: sharing the fats. Biochim Biophys Acta 1791:441–447CrossRefPubMedGoogle Scholar
  48. Neill PJ, Smith JH, Doughty BL, Kemp M (1988) The ultrastructure of the Schistosoma mansoni egg. Am J Trop Med Hyg 39:52–65PubMedGoogle Scholar
  49. Poddubnaya LG, Bruňanská M, Kuchta R, Scholz T (2006) First evidence of the presence of microtriches in the Gyrocotylidea. J Parasitol 92:703–707CrossRefPubMedGoogle Scholar
  50. Poddubnaya LG, Scholz T, Kuchta R, Levron C, Gibson DI (2008) Ultrastructure of the surface structures and secretory glands of the rosette attachment organ of Gyrocotyle urna (Cestoda: Gyrocotylidea). Folia Parasitol 55:207–218CrossRefPubMedGoogle Scholar
  51. Poddubnaya LG, Kuchta R, Levron C, Gibson DI, Scholz T (2009) The unique ultrastructure of the uterus of the Gyrocotylidea Poche, 1926 (Cestoda) and its phylogenetic implications. Syst Parasitol 74:81–93CrossRefPubMedGoogle Scholar
  52. Poddubnaya LG, Kuchta R, Scholz T, Xylander WER (2010) Ultrastructure of the ovarian follicles, oviducts and oocytes of Gyrocotyle urna (Neodermata: Gyrocotylidea). Folia Parasitol 57:173–184CrossRefPubMedGoogle Scholar
  53. Rohde K (1972) The Aspidogastrea, especially Multicotyle purvisi Dawes, 1941. Adv Parasitol 10:77–151CrossRefGoogle Scholar
  54. Ruszkowski JS (1932) Etudes sur le cycle évolutif et sur la structure des Cestodes de mer. IIième partie. Sur les larves de Gyrocotyle urna (Gr. et Wagen.). Bull Acad Pol Sci Lett 11:629–641Google Scholar
  55. Salvenmoser W, Egger B, Achatz JG, Ladurner P, Hess MW (2010) Electron microscopy of flatworms: standard and cryo-preparation methods. Methods Cell Biol 96:307–330CrossRefPubMedGoogle Scholar
  56. Simmons JE (1974) Gyrocotyle: a century-old enigma. In: Vernberg WN (ed) Symbiosis in the sea. University of South Carolina Press, Columbia, pp 195–218Google Scholar
  57. Smyth JD, McManus DP (1989) The physiology and biochemistry of cestodes. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  58. Świderski Z (1994) Origin, differentiation and ultrastructure of egg envelopes surrounding the miracidia of Schistosoma mansoni. Acta Parasitol 39:64–72Google Scholar
  59. Świderski Z, Xylander WER (2010) Vitellocytes and vitellogenesis in cestodes in relation to embryonic development, egg production and life cycle. Int J Parasitol 30:805–817CrossRefGoogle Scholar
  60. Świderski Z, Bruňanská M, Młocicki D, Conn DB (2005) Ultrastructure of the oncospheral envelopes in the pseudophyllidean cestode Eubothrium salvelini (Schrank, 1790). Acta Parasitol 50:312–318Google Scholar
  61. Świderski Z, Gibson D, Santos MJ, Poddubnaya LG (2010) Ultrastructure of the intrauterine eggs of Didymobothrium rudolphii (Monticelli, 1890) (Cestoda, Spathebothriidea, Acrobothriidae) and its phylogenetic implications. Acta Parasitol 55:254–269Google Scholar
  62. Świderski Z, Poddubnaya LG, Gibson DI, Levron C, Młocicki D (2011) Egg formation and the early embryonic development of Aspidogaster limacoides Diesing, 1835 (Aspidogastrea: Aspidogastridae), with comments on their phylogenetic significance. Parasitol Int 60:371–380CrossRefPubMedGoogle Scholar
  63. Świderski Z, Poddubnaya LG, Zhokhov AE, Miquel J, Conn DB (2014) Ultrastructural evidence for completion of the entire miracidial maturation in intrauterine eggs of the digenean Brandesia turgida (Brandes, 1988) (Plagiorchiida: Pleurogenidae). Parasitol Res 113:1103–1111CrossRefPubMedPubMedCentralGoogle Scholar
  64. Świderski Z, Miquel J, Torres J, Conn DB (2015) Ultrastructural study of the egg wall surrounding the developing miracidia of the digenean Prosotocus confusus (Looss, 1894) (Plagiorchiida: Pleurogenidae), with the description of a unique cocoon-like envelope. Parasitol Res 114:185–191. doi:10.1007/s00436-014-4177-1 CrossRefPubMedGoogle Scholar
  65. Tinsley RC (1983) Ovoviviparity in platyhelminth life cycles. Parasitology 71:445–463CrossRefGoogle Scholar
  66. Waeschenbach A, Webster BL, Littlewood DTJ (2012) Adding resolution to ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with large fragments of mtDNA. Mol Phylogenetics Evol 63:834–847CrossRefGoogle Scholar
  67. Watson EE (1911) The genus Gyrocotyle and its significance for problems of cestode structure and phylogeny. Univ Calif Publ Zool 6:353–468Google Scholar
  68. Williams HH, Colin JA, Halvorsen O (1987) Biology of gyrocotylideans with emphasis on reproduction, population ecology and phylogeny. Parasitology 95:173–207CrossRefPubMedGoogle Scholar
  69. Xylander WER (1987a) Ultrastructure of the lycophora larva of Gyrocotyle urna (Cestoda, Gyrocotylidea). 1. Epidermis, neodermis anlage and body musculature. Zoomorphology 106:352–360CrossRefGoogle Scholar
  70. Xylander WER (1987b) Ultrastructure of the lycophora larva of Gyrocotyle urna (Cestoda, Gyrocotylidea). 2. Receptors and nervous-system. Zool Anz 219:239–255Google Scholar
  71. Xylander WER (1987c) Ultrastructure of the lycophora larva of Gyrocotyle urna (Cestoda, Gyrocotylidea). 3. The protonephridial system. Zoomorphology 107:88–95CrossRefGoogle Scholar
  72. Xylander WER (1987d) Ultrastructural studies on the reproductive system of Gyrocotylidea and Amphilinidea (Cestoda): II. Vitellarium, vitellocyte development and vitelloduct of Gyrocotyle urna. Zoomorphology 107:293–297CrossRefGoogle Scholar
  73. Xylander WER (1990) Ultrastructure of the lycophora larva of Gyrocotyle urna (Cestoda, Gyrocotylidea). 4. The glandular system. Zoomorphology 109:319–328CrossRefGoogle Scholar
  74. Xylander WER (1991) Ultrastructure of the lycophora larva of Gyrocotyle urna (Cestoda, Gyrocotylidea). 5. Larval hooks and associated tissues. Zoomorphology 111:59–66CrossRefGoogle Scholar
  75. Xylander WER (2001) The Gyrocotylidea, Amphilinidea and the early evolution of Cestoda. In: Littlewood DTJ, Bray RA (eds) Interrelationships of the Platyhelminthes. Taylor & Francis, London, pp 103–111Google Scholar
  76. Xylander WER, Poddubnaya LG (2009) Ultrastructure of the neodermal sclerites of Gyrocotyle urna Grube and Wagener, 1852 (Gyrocotylidea, Cestoda). Parasitol Res 105:1593–1601CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of ParasitologyBiology Centre of the Czech Academy of SciencesCeske BudejoviceCzech Republic
  2. 2.Department of Invertebrate Zoology, Museum of Comparative ZoologyHarvard UniversityCambridgeUSA
  3. 3.Department of Biology and One Health CenterBerry CollegeMount BerryUSA

Personalised recommendations