Advertisement

Variation in skull size and shape of two snake species (Natrix natrix and Natrix tessellata)

  • 529 Accesses

  • 7 Citations

Abstract

We examined morphological differences in cranium size and shape between closely related snake species, Natrix natrix and Natrix tessellata (Natricinae, Colubroidea), as well as variation within species. These two snake species have similar ecology and habitat preferences but differ in feeding strategies. Our hypothesis was that divergence in size and shape of cranial elements between species depends on their functional role and anatomical relationships. To analyse complex, kinetic crania, we applied computed microtomography and 3D geometric morphometrics. We analysed size and shape of six cranial elements separately. We selected two “non-trophic” structures (akinetic braincase and mobile nasals) and four movable “trophic” skeletal elements (maxillae, quadrates, pterygoids and compound bones) which are involved in prey capture and swallowing. Our results showed that N. natrix and N. tessellata significantly differ in size and shape of all analysed cranial elements. In both species, cranium is significantly larger in females than in males. To account for possible differences in shape due to differences in size, we estimated allometric and non-allometric component of shape variation. For all elements, except nasals, allometry accounted for a significant proportion of the variance in shape. The analysis of non-allometric component of shape variation revealed significant dimorphism in shape of the braincase and maxilla between N. tessellata females and males, and marginally significant sexual dimorphism in shape of maxilla in N. natrix. These results indicated that sexual dimorphism in skull shape is species specific and not entirely caused by selection for larger size in females.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adams DC, Rohlf FJ (2000) Ecological character displacement in Plethodon: biomechanical differences found from a geometric morphometric study. Proc Natl Acad Sci 97:4106–4111. doi:10.1073/pnas.97.8.4106

  2. Arnold SJ (1993) Foraging theory and prey size-predator size relations in snakes. In: Seigel RA, Collins JT (eds) Snakes: ecology and behavior. McGraw-Hill, New York, pp 87–115

  3. Beebe T, Griffiths RA (2000) Amphibians and reptiles: a natural history of the British herpetofauna. Harper Collins, London

  4. Bellairs ADA (1949) The anterior brain-case and interorbital septum of Sauropsida, with a consideration of the origin of snakes. J Linn Soc Lond Zool 41:482–512. doi:10.1111/j.1096-3642.1940.tb02418.x

  5. Boltt R, Ewer R (1964) The functional anatomy of the head of the puff adder, Bitis arietans (Merr.). J Morphol 114:83–105. doi:10.1002/jmor.1051140105

  6. Borczyk B (2015) Allometry of head size and shape dimorphism in the grass snake (Natrix natrix L.). Turk J Zool 39:340–343. doi:10.3906/zoo-1402-9

  7. Camilleri C, Shine R (1990) Sexual dimorphism and dietary divergence: differences in trophic morphology between male and female snakes. Copeia 1990:649–658. doi:10.2307/1446430

  8. Cox RM, Skelly SL, John-Alder HB (2003) A comparative test of adaptive hypotheses for sexual size dimorphism in lizards. Evolution 57:1653–1669. doi:10.1111/j.0014-3820.2003.tb00371.x

  9. Cundall D (1983) Activity of head muscles during feeding by snakes: a comparative study. Am Zool 23:383–396. doi:10.1093/icb/23.2.383

  10. Cundall D (2000) Drinking in snakes: kinematic cycling and water transport. J Exp Biol 203:2171–2185

  11. Cundall D, Gans C (1979) Feeding in water snakes: an electromyographic study. J Exp Zool 209:189–207. doi:10.1002/jez.1402090202

  12. Cundall D, Greene HW (2000) Feeding in snakes. In: Schwenk K (ed) Feeding: form, function, and evolution in Tetrapod vertebrates. Academic Press, San Diego, pp 293–333

  13. Darwin C (1971) The descent of man and selection in relation to sex. Murray, London

  14. Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, New York

  15. Dwyer CM, Kaiser H (1997) Relationship between skull form and prey selection in the thamnophiine snake genera Nerodia and Regina. J Herpetol 31:463–475. doi:10.2307/1565597

  16. Fitch HS (1981) Sexual size differences in reptiles. Misc Publ Mus Nat Hist Univ Kans 70:1–72

  17. Forsman A, Lindell L (1993) The advantage of a big head: swallowing performance in adders, Vipera berus. Funct Ecol 7:183–189. doi:10.2307/2389885

  18. Forsman A, Shine R (1997) Rejection of non-adaptive hypotheses for intraspecific variation in trophic morphology in gape-limited predators. Biol J Linn Soc 62:209–223. doi:10.1111/j.1095-8312.1997.tb01623.x

  19. Gans C (1961) The feeding mechanism of snakes and its possible evolution. Am Zool 1:217–227. doi:10.1093/icb/1.2.217

  20. Gentilli A, Cardini A, Fontaneto D, Zuffi MAL (2009) The phylogenetic signal in cranial morphology of Vipera aspis: a contribution from geometric morphometrics. Herpetol J 19:69–77

  21. Gloyd HK, Conant R (1990) Snakes of the Agkistrodon complex: a monographic review. Society for the Study of Amphibians and Reptiles (SSAR), Oxford

  22. Good P (1994) Permutation tests: a practical guide to resampling methods for testing hypotheses. Springer, New York

  23. Gregory PT, Isaac LA (2004) Food habits of the grass snake in southeastern England: is Natrix natrix a generalist predator? J Herpetol 38:88–95. doi:10.1670/87-03A

  24. Gruschwitz M, Lenz S, Mebert K, Lanka V (1999) Natrix tessellata (Laurenti, 1768)–Würfelnatter. In: Bohme W (ed) Handbuch der reptilien und amphibien Europas. AULA-Verlag, Wiesbaden, pp 581–644

  25. Guicking D, Lawson R, Joger U, Wink M (2006) Evolution and phylogeny of the genus Natrix (Serpentes: Colubridae). Biol J Linn Soc 87:127–143. doi:10.1111/j.1095-8312.2006.00561.x

  26. Hampton PM (2011) Comparison of cranial form and function in association with diet in natricine snakes. J Morphol 272:1435–1443. doi:10.1002/jmor.10995

  27. Hanken J, Hall BK (1993) Mechanisms of skull diversity and evolution. In: Hanken J, Hall BK (eds) The skull. Functional and evolutionary mechanisms, vol 3. The University of Chicago Press, Chicago, pp 1–36

  28. Herrel A, Schaerlaeken V, Meyers JJ, Metzger KA, Ross CF (2007) The evolution of cranial design and performance in squamates: consequences of skull-bone reduction on feeding behavior. Integr Comp Biol 47:107–117. doi:10.1093/icb/icm014

  29. Herrel A, Vincent S, Alfaro M, Van Wassenbergh S, Vanhooydonck B, Irschick DJ (2008) Morphological convergence as a consequence of extreme functional demands: examples from the feeding system of natricine snakes. J Evolut Biol 21:1438–1448. doi:10.1111/j.1420-9101.2008.01552.x

  30. Hibbitts TJ, Fitzgerald LA (2005) Morphological and ecological convergence in two natricine snakes. Biol J Linn Soc 85:363–371. doi:10.1111/j.1095-8312.2005.00493.x

  31. Kabisch K (1999) Natrix natrix (Linnaeus, 1758)–Ringelnatter. In: Bohme W (ed) Handbuch der reptilien und amphibien Europas. AULA-Verlag, Wiesbaden, pp 513–580

  32. Kardong KV (1977) Kinesis of the jaw apparatus during swallowing in the cottonmouth snake, Agkistrodon piscivorus. Copeia 1977:338–348. doi:10.2307/1443913

  33. Kardong KV (1979) “Protovipers” and the evolution of snake fangs. Evolution 33:433–443. doi:10.2307/2407632

  34. Kardong KV (1980) Evolutionary patterns in advanced snakes. Am Zool 20:269–282. doi:10.1093/icb/20.1.269

  35. King RB (1989) Body size variation among island and mainland snake populations. Herpetologica 45:84–88

  36. King RB (2002) Predicted and observed maximum prey size–snake size allometry. Funct Ecol 16:766–772. doi:10.1046/j.1365-2435.2002.00678.x

  37. Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357. doi:10.1111/j.1755-0998.2010.02924.x

  38. Klingenberg CP, Barluenga M, Meyer A (2002) Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution 56:1909–1920. doi:10.1111/j.0014-3820.2002.tb00117.x

  39. Kramer E (1980) Zum Skelett der Aspisviper, Vipera aspis (Linnaeus, 1758). Rev Suisse Zool 87:3–16

  40. Krause MA, Burghardt GM, Gillingham JC (2003) Body size plasticity and local variation of relative head and body size sexual dimorphism in garter snakes (Thamnophis sirtalis). J Zool 261:399–407. doi:10.1017/S0952836903004321

  41. Luiselli L, Rugiero L (1991) Food niche partitioning by water snakes (genus Natrix) at a freshwater environment in central Italy. J Freshw Ecol 6:439–444. doi:10.1080/02705060.1991.9665323

  42. Madsen T (1983) Growth rates, maturation and sexual size dimorphism in a population of grass snakes, Natrix natrix, in southern Sweden. Oikos 40:277–282. doi:10.2307/3544592

  43. Mebert K (2011) The dice snake, Natrix tessellata: biology, distribution and conservation of a palaearctic species. Mertensiella. Deutsche Gesellschaft fur Herpetologie und Terrarienkunde (DGHT), Rheinbach

  44. Mertens R (1947) Studien zur eidonomie und taxonomie der ringelnatter (Natrix natrix). Abh Senck- Enbergischen Naturforschenden Ges 476:1–38

  45. Mori A, Vincent SE (2008) An integrative approach to specialization: relationships among feeding morphology, mechanics, behaviour, performance and diet in two syntopic snakes. J Zool 275:47–56. doi:10.1111/j.1469-7998.2007.00410.x

  46. Olsson M, Shine R, Wapstra E, Ujvari B, Madsen T (2002) Sexual dimorphism in lizard body shape: the roles of sexual selection and fecundity selection. Evolution 56:1538–1542. doi:10.1111/j.0014-3820.2002.tb01464.x

  47. Polachowski KM, Werneburg I (2013) Late embryos and bony skull development in Bothropoides jararaca (Serpentes, Viperidae). Zoology 116:36–63. doi:10.1016/j.zool.2012.07.003

  48. Pough FH, Groves JD (1983) Specializations of the body form and food habits of snakes. Am Zool 23:443–454. doi:10.1093/icb/23.2.443

  49. Rieppel O (1980) The evolution of the ophidian feeding system. Zool Jahrbucher Abt Anat Ontog Tiere 103:551–564

  50. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  51. Rieppel O (2007) The naso-frontal joint in snakes as revealed by high-resolution X-ray computed tomography of intact and complete skulls. Zool Anz J Comp Zool 246:177–191. doi:10.1016/j.jcz.2007.04.001

  52. Schoener TW (1977) Competition and the niche. In: Gans C, Tinkle DW (eds) Biology of the Reptilia. Academic Press, London, pp 35–136

  53. Shine R (1986) Sexual differences in morphology and niche utilization in an aquatic snake, Acrochordus arafurae. Oecologia 69:260–267. doi:10.1007/BF00377632

  54. Shine R (1989) Ecological causes for the evolution of sexual dimorphism: a review of the evidence. Q Rev Biol 64:419–461. doi:10.1086/416458

  55. Shine R (1991) Why do larger snakes eat larger prey items? Funct Ecol 5:493–502. doi:10.2307/2389631

  56. Shine R (1993) Sexual dimorphism in snakes. In: Seigel RA, Collins JT (eds) Snakes: ecology and behavior. McGraw-Hill, New York, pp 49–86

  57. Shine R (1994) Sexual size dimorphism in snakes revisited. Copeia 1994:326–346. doi:10.2307/1446982

  58. Shine R, Olsson MM, Lemaster MP, Moore IT, Mason RT (2000) Effects of sex, body size, temperature, and location on the antipredator tactics of free-ranging gartersnakes (Thamnophis sirtalis, Colubridae). Behav Ecol 11:239–245. doi:10.1093/beheco/11.3.239

  59. Slatkin M (1984) Ecological causes of sexual dimorphism. Evolution 38:622–630. doi:10.2307/2408711

  60. Smith KK (1993) The form of the feeding apparatus in terrestrial vertebrates: studies of adaptation and constraint. In: Hanken J, Hall BK (eds) The skull. Functional and evolutionary mechanisms, vol 3. The University of Chicago Press, Chicago, pp 150–196

  61. Šukalo G, Đorđević S, Gvozdenović S, Simović A, Anđelković M, Blagojević V, Tomović L (2014) Intra-and inter-population variability of food preferences of two Natrix species on the Balkan peninsula. Herpetol Conserv Biol 9:123–136

  62. Thorpe R (1979) Multivariate analysis of the population systematics of the ringed snake, Natrix natrix (L.). Proc R Soc Edinb Sect B Biol Sci 78:1–62. doi:10.1017/S026972700001294X

  63. Vincent SE, Herrel A (2007) Functional and ecological correlates of ecologically-based dimorphisms in squamate reptiles. Integr Comp Biol 47:172–188. doi:10.1093/icb/icm019

  64. Vincent S, Brandley M, Herrel A, Alfaro M (2009) Convergence in trophic morphology and feeding performance among piscivorous natricine snakes. J Evol Biol 22:1203–1211. doi:10.1111/j.1420-9101.2009.01739.x

Download references

Acknowledgments

We thank anonymous reviewer for helpful comments on earlier version of the manuscript. This research was financed by the Ministry of Education, Science and Technological Development of Republic of Serbia (Grant No. 173007 and 173043). AI acknowledges grants from SyntheSys (NL-TAF 3082 and 3926) and a Naturalis Biodiversity Center “Temminck fellowship”.

Author information

Correspondence to Marko Andjelković.

Additional information

Communicated by A. Schmidt-Rhaesa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 3931 kb)

Supplementary material 2 (AVI 3987 kb)

Supplementary material 1 (AVI 3931 kb)

Supplementary material 2 (AVI 3987 kb)

Supplementary material 3 (DOCX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andjelković, M., Tomović, L. & Ivanović, A. Variation in skull size and shape of two snake species (Natrix natrix and Natrix tessellata). Zoomorphology 135, 243–253 (2016) doi:10.1007/s00435-016-0301-3

Download citation

Keywords

  • Natricinae
  • Geometric morphometrics
  • Cranium
  • 3D models
  • Sexual dimorphism
  • Allometry